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a b s t r a c t

Factor models have large potential in the modeling of several natural and human phenom-
ena. In this paper we consider a multivariate time series Yn, n ≥ 1, rescaled through ran-
dom factors Tn, n ≥ 1, extending some scale mixture models in the literature. We analyze
its extremal behavior by deriving the maximum domain of attraction and the multivariate
extremal index, which leads to newways to constructmultivariate extreme value distribu-
tions. The computation of the multivariate extremal index and the characterization of the
tail dependence show an interesting property of these models. More precisely, however
much it is the dependence within and between factors Tn, n ≥ 1, the extremal index of the
model is unit whenever Yn, n ≥ 1, presents cross-sectional and sequential tail indepen-
dence. We illustrate with examples of thinned multivariate time series and multivariate
autoregressive processes with random coefficients. An application of these latter to finan-
cial data is presented at the end.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Factor models have been used in the modeling of data within hydrology (Nadarajah [26,27] 2006/2009, Nadarajah and
Masoom [28] 2008), storm insurance (Lescourret and Robert, [22] 2006), soil erosion in crops (Todorovic and Gani [36] 1987,
Alpuim and Athayde [2] 1990), reliability (Alpuim and Athayde [2] 1990, Kotz et al. [19] 2000), economy (Arnold, [3] 1983)
and finance (Ferreira and Canto e Castro, [13] 2010).

Let Xn = (Xn1, . . . , Xnd), n ≥ 1, be a d-variate sequence, such that Xnj = YnjTnj, j = 1, . . . , d, where

(a) Y = {(Yn1, . . . , Ynd)}n≥1 is a stationary sequence such that, Ynj has a Pareto-type distribution FYj , j = 1, . . . , d, i.e., for
each j = 1, . . . , d, there exists a positive constant βj for which

FYj(x) = 1 − x−βj lYj(x), (1)

with lYj a slowly varying function, i.e., lYj(ax)/lYj(x) → 1, as x → ∞, for all a > 0,
(b) T = {(Tn1, . . . , Tnd)}n≥1 is a stationary sequence, independent of Y, with support Rd

+
and such that E(T

ϵj
nj ) < ∞, for some

ϵj > βj, j = 1, . . . , d.

Thiswork is concernedwith the extremal behavior of themultivariate time seriesXn, extendingmost of the factormodels
mentioned above. More precisely, we derive the max-domain of attraction (Section 2), calculate the multivariate extremal
index (Section 3) and characterize the tail dependence (Section 4).
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The product YnjTnj can be seen as a random normalization of Ynj by Tnj, which is often required when modeling extremal
behavior. For instance, if Ynj is the rate of an extreme event and Tnj its average cost, then YnjTnj can be interpreted as the
total cost of the extreme event. Products of two independent random variables where one of them is regularly varying have
been addressed from both theoretical and applied points of view (Maulik et al. [24] 2002, Lescourret and Robert [22] 2006,
Nadarajah [26] 2006 and references therein).

Our motivation to the probabilistic study of extremes of multivariate sequences of products was originated from some
particular models. Consider, for instance that Tnj are Bernoulli distributed. Then Xn provides a model for multivariate
data subjected to missing values. Extremes of univariate sequences with random missing values have been considered in
Weissman and Cohen ([37], 1995) as a particular case of somemixturemodels. Additional results on extremes of incomplete
samples can be found in Mladenovic and Piterbarg ([25], 2006) and Tan and Wang ([34], 2012).

Li ([23], 2009) analyzed the tail dependence of the scale mixture Xn when Yn = (Yn1, . . . , Ynd) has multivariate extreme
value distributionwith standard Fréchetmargins and Tnj = Tn, j = 1, . . . , d. Herewe consider scalemixtures ofmultivariate
sequences which are very flexible models for data exhibiting tail dependence and asymptotic tail independence such as,
respectively, ARMAX and pARMAX sequences (Ferreira and Ferreira [14]). We give particular emphasis to a model in which
βj = α/γj, α, γj > 0, j = 1, . . . , d, generalizing the results of Lescourret and Robert ([22], 2006) (Section 5. An application
to financial data will be provided at the end (Section 6).

2. Preliminary results and max-domain of attraction

We start with some properties of {Xn}n ≥ 1, that will be used along the paper. We use notation rj = E(T
βj
nj ) along the

paper.

Proposition 2.1. For each j = 1, . . . , d, {Xnj}n≥1 is a stationary sequence having Pareto-type distribution.

Proof. First, observe that

lim
x→∞

P(YnjTnj > x)
P(Ynj > x)

= lim
x→∞


x−βjzβj lYj(x/z)dPTnj(z)

x−βj lYj(x)
= rj,

where the last step is due to the dominated convergence theorem and by using the Potter bounds of regularly varying
functions (Bingham et al., [5] 1987; Theorem 1.5.6.). Therefore, for large x,

1 − FXj(x) = P(Xnj > x) = x−βj lYj(x)rj(1 + o(1)) := x−βj lXj(x), (2)

where it is immediately seen that lXj is a slowly varying function. �

In the sequel we denote UXj(x) and UYj(x) the quantile functions, F−1
Xj

(1 − 1/x) and F−1
Yj

(1 − 1/x), respectively.
Given (1) and applying the Bruyn conjugate concept (Beirlant et al. [4] 2004, Proposition 2.5), we have that, for large x,

UYj(x) = x1/βj lUYj
(x) = x1/βj l

1/βj
Yj

(x1/βj)(1 + o(1)), (3)

where lUYj
is a slowly varying function. Using again the Bruyn conjugate concept and by (2), we can state, for large x,

UXj(x) = x1/βj lUXj
(x) = x1/βj l

1/βj
Xj

(x1/βj)(1 + o(1)) = x1/βj

lYj(x

1/βj)rj
1/βj

(1 + o(1)),

where lUXj
is a slowly varying function. Therefore, and considering (3), we have for large x,

UXj(x) = x1/βj lUYj
(x)r

1/βj
j (1 + o(1)) = UYj


rj x

(1 + o(1)). (4)

Proposition 2.2. The upper tail copula function of X is given by

ΛX(x1, . . . , xd) = E


ΛY


Tβ1
1 x1
r1

, . . . ,
Tβd
d xd
rd


,

with (x1, . . . , xd) ∈ Rd
+

= [0, ∞]
d
\ {(∞, . . . ,∞)}, where T = (T1, . . . , Td) is a random vector distributed as Tn = (Tn1, . . . ,

Tnd) and provided that the upper tail copula function of Yn exists, i.e., the limit

ΛY(x1, . . . , xd) = lim
t→∞

tP


d

j=1


Y1j > UYj


t/xj


(5)

is finite.
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