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a b s t r a c t

Differential entropy and log determinant of the covariance matrix of a multivariate Gaus-
sian distribution havemany applications in coding, communications, signal processing and
statistical inference. In this paper we consider in the high-dimensional setting optimal es-
timation of the differential entropy and the log-determinant of the covariance matrix. We
first establish a central limit theorem for the log determinant of the sample covariancema-
trix in the high-dimensional setting where the dimension p(n) can grow with the sample
size n. An estimator of the differential entropy and the log determinant is then considered.
Optimal rate of convergence is obtained. It is shown that in the case p(n)/n → 0 the estima-
tor is asymptotically sharp minimax. The ultra-high-dimensional setting where p(n) > n
is also discussed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The determinant of a random matrix is an important functional that has been actively studied in random matrix theory
under different settings. See, for example, [15,18,19,12–14,11,27,28,25,23]. In particular, central limit theorems for the log-
determinant have been established for random Gaussian matrices in [15], for general real i.i.d. random matrices in [23]
under an exponential tail condition on the entries, and for Wigner matrices in [28]. The determinant of random matrices
has many applications. For example, the determinant is needed for computing the volume of random parallelotopes, which
is of significant interest in random geometry (see [20,24]). More specifically, let Z = (Z1, . . . , Zp) be linearly independent
random vectors in Rn with p ≤ n. Then the convex hull of these p points in Rn almost surely determines a p-parallelotope
and the volume of this random p-parallelotope is given by ▽n,p = det(ZTZ)1/2, the squared root of the determinant of th
randommatrix ZTZ .

The differential entropy and the determinant of the covariance matrix of a multivariate Gaussian distribution play a
particularly important role in information theory and statistical inference. The differential entropy has a wide range of ap-
plications inmany areas including coding, machine learning, signal processing, communications, biosciences and chemistry.
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See [26,16,4,10,21]. For example, in molecular biosciences, the evaluation of entropy of a molecular system is important for
understanding its thermodynamic properties. In practice, measurements onmacromolecules are oftenmodeled as Gaussian
vectors. For a multivariate Gaussian distribution Np(µ,Σ), it is well-known that the differential entropy H(·) is given by

H(Σ) =
p
2

+
p log(2π)

2
+

log detΣ
2

. (1)

In this case, estimation of the differential entropy of the system is thus equivalent to estimation of the log determinant of
the covariance matrix from the sample. For other applications, the relative entropy (a.k.a. the Kullback–Leibler divergence),
which involves the difference of the log determinants of two covariance matrices in the Gaussian case, is important. The de-
terminant of the covariance matrices is also needed for constructing hypothesis tests in multivariate statistics (see [2,22]).
For example, the likelihood ratio test for testing linear hypotheses about regression coefficients in MANOVA is based on the
ratio of the determinants of two sample covariance matrices [2]. In addition, quadratic discriminant analysis, which is an
important technique for classification, requires the knowledge of the difference of the log determinants of the covariance
matrices of Gaussian distributions. For these applications, it is important to understand the properties of the log determi-
nant of the sample covariance matrix. The high-dimensional setting where the dimension p(n) grows with the sample size
n is of particular current interest.

Motivated by the applications mentioned above, in the present paper we first study the limiting law of the log determi-
nant of the sample covariance matrix for the high-dimensional Gaussian distributions. Let X1, . . . , Xn+1 be an independent
random sample from the p-dimensional Gaussian distribution Np(µ,Σ). The sample covariance matrix is

Σ̂ =
1
n

n+1
k=1

(Xk − X̄)(Xk − X̄)T . (2)

A central limit theorem is established for the log determinant of Σ̂ in the high-dimensional setting where the dimension p
grows with the sample size nwith the only restriction that p(n) ≤ n. In the case when limn→∞

p(n)
n = r for some 0 ≤ r < 1,

the central limit theorem shows

log det Σ̂ −

p
k=1

log

1 −

k
n


− log detΣ

−2 log

1 −

p
n

 L
−→ N (0, 1) as n → ∞. (3)

The result for the boundary case p = n yields

log det Σ̂ − log(n − 1)! + n log n − log detΣ
√
2 log n

L
−→ N (0, 1), as n → ∞. (4)

In particular, this result recovers the central limit theorem for the log determinant of a random matrix with i.i.d. standard
Gaussian entries. See [15,23].

We then consider optimal estimation of the differential entropy and the log-determinant of the covariance matrix in
the high-dimensional setting. In the conventional fixed-dimensional case, estimation of the differential entropy has been
considered by using both Bayesian and frequentist methods. See, for example, [21,26,1]. A Bayesian estimator was proposed
in [26] using the inverse Wishart prior which works without the restriction that dimension is smaller than the sample
size. However, how to choose good parameter values for the inverse Wishart prior remains an open question when the
population covariancematrix is nondiagonal. A uniformlyminimumvariance unbiased estimator (UMVUE)was constructed
in [1]. It was later proved in [21] that this UMVUE is in fact dominated by a Stein-type estimator and is thus inadmissible.
The construction of an admissible estimator was left as an open problem in [21].

Based on the central limit theorem for the log determinant of the sample covariance matrix Σ̂ , we consider an estimator
of the differential entropy and the log determinant of Σ and study its properties. A non-asymptotic upper bound for the
mean squared error of the estimator is obtained. To show the optimality of the estimator, non-asymptotic minimax lower
bounds are established using Cramer–Rao’s information inequality. The lower bound results show that consistent estimation
of log detΣ is only possible when p(n)

n → 0. Furthermore, it is shown that the estimator is asymptotically sharp minimax
in the setting of p(n)

n → 0.
The ultra-high-dimensional setting where p(n) > n is important due to many contemporary applications. It is a com-

mon practice in high-dimensional statistical inference, including compressed sensing and covariance matrix estimation, to
impose structural assumption such as sparsity on the target in order to effectively estimate the quantity of interest. It is of
significant interest to consider estimation of the log determinant of the covariance matrix and the differential entropy in
the case p(n) > n under such structural assumptions. A minimax lower bound is given in Section 4 using Le Cam’s method
which shows that it is in fact not possible to estimate the log determinant consistently even when the covariance matrix is
known to be diagonal with equal values. This negative result implies that consistent estimation of log detΣ is not possible
when p(n) > n over all the collections of the commonly considered structured covariancematrices such as bandable, sparse,
or Toeplitz covariance matrices.
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