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a b s t r a c t

We introduce multiple hidden Markov models (MHMMs) where a multivariate categorical
time series depends on a latent multivariate Markov chain. MHMMs provide an elegant
framework for specifying various independence relationships between multiple discrete
time processes. These independencies are interpreted as Markov properties of a mixed
graph and a chain graph associated respectively to the latent and observation components
of the MHMM. These Markov properties are also translated into zero restrictions on the
parameters of marginal models for the transition probabilities and the distributions of
observable variables given the latent states.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In several applications involving time series, it is interesting to describe how the evolution of variables over time depends
on latent characteristics or the focusmaybeon thedynamics of unobservable characteristicsmeasuredby variables observed
on consecutive time occasions. These issues are addressed by hidden Markov models and a widespread application of them
has occurred in several fields such as speech recognition, signal processing, digital communication, biology, reliability, etc.,
standard references are [3,13,15,16], among others.

Basically, a hidden Markov model assumes that an observable time series depends on a latent Markov chain in such
a way that the joint process is also Markovian. Note that, throughout the paper, the term observable never refers to the
observability property of state-space models (see [18] and [21], among others), but it is used with its literal meaning to
distinguish the variables that can be directly observed from the latent ones.

In this work, we focus on hidden Markov models in discrete time with a multivariate categorical process depending on
a multivariate latent chain. In these models, several variables are observed and their distribution is supposed to be affected
by one or more latent variables. For the multidimensionality of latent and observation components, we will refer to these
models as multiple hidden Markov models (MHMMs).

The MHMM can be seen as a variant of the usual hidden Markov model (HMM) that allows modeling opportunities not
available in the standard approach with the same clarity, interpretability and parsimony.

In particular, MHMMs enable us to formulate meaningful independence structures for the latent component and
for the observable variables given the latent states. Such independence hypotheses are restrictions on the transition
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probabilities of the latent chain and on the state-dependent distributions of the observation process. The same hypotheses
can be investigated using the classical hidden Markov models, but formulating these hypotheses as simple conditional
independencies and turning them into tractable constraints on parameters are much more demanding than in the MHMM
context.

MHMMs can bewell suited to applicationswhere all the observable time series are affected by one commonunobservable
factor (general effect) and each observable variable is also governed by its specific latent variable. MHMMsmay also handle
time series data where an unobservable aspect influences the marginal dynamics of each observable variable while another
latent factor influences the association among them. In the framework of MHMMs, different sets of observable categorical
time series are allowed to depend on different sets of unobservable processes and the observable variables are not required
to be independent given the latent states (local independence assumption), but the association between them is also
modeled. Moreover, in MHMMs, the multivariate latent process can satisfy the hypotheses of Granger noncausality and
contemporaneous independence described by Colombi and Giordano [7] for multivariate Markov chains.

So great is the variety of roles (specific, generic, association-affecting, etc.) assigned to the unobserved component in
MHMMs, that it is hard to imagine this variety being easily handled by any classical HMM where only one latent process is
allowed.

This approach, for example, responds to the shortcomings highlighted in Zucchini andGuttorp [23]whoproposed amodel
for describing the sequence of wet and dry days at 5 sites without taking into account the spatial dependence among sites
situated in closed locations and without allowing for a multivariate state process with sites in different regions responding
to different components of the latent process. Other examples illustrated in the literature can be enriched by more flexible
and realistic hypotheses using MHMMs.

To appreciate the possibility offered by MHMMs of modeling various hypotheses on the temporal evolution of the latent
components and on the influence of the latent states on the observable variables, it is crucial to formulate such hypotheses by
compact and simple expressions. The methodology of graphical models (Lauritzen [14]) serves this need. In fact, the graphs
can visually represent the complex independence structures related to the latent and observation components of theMHMM
and all the hypotheses can be described and handled by careful combination of simple elements in graphical models. This is
the reason why we take advantage of the graphical models by presenting the independence conditions behind the MHMMs
as Markov properties of the associated graphs and testing them as simple linear constraints on parameters.

The paper is organized as follows. MHMMs are presented in Section 2 and Section 3 illustrates that the transition proba-
bilities of the latentmodel and the distributions of observable variables given the latent states ofMHMMs can be required to
obey theMarkov properties of amixed and a chain graph, respectively. In Section 4, the conditional independencies, defining
the MHMMs and interpreted as Markov properties of graphs in Section 3, are shown to be equivalent to linear constraints
on parameters of Gloneck andMcCullaghmodels [12] for the transition probabilities and the state-dependent distributions.
This last result is extremely important for fitting and testing MHMMs. Finally, in the last section several MHMMs are used
to analyze two data sets.

2. Multiple hidden Markov models

Let EU be a r-variate process of categorical variables, EU = {EU(t) : t ∈ N} = {Ei(t) : t ∈ N, i ∈ U}, U = {1, . . . , r},
N = {0, 1, 2, . . . , } and let FV be a s-dimensional process of categorical variables FV = {FV(t) : t ∈ N} = {Fj(t) : t ∈ N, j ∈

V}, V = {1, . . . , s}. The random variables Ei(t), Fj(t) take values in finite sets Ei and Fj, i ∈ U, j ∈ V .
For every subset T ⊂ U and R ⊂ V , marginal processes are represented by ET = {Ei(t) : i ∈ T , t ∈ N} and

FR = {Fj(t) : j ∈ R, t ∈ N}. Univariate marginal processes will be denoted by Ei, Fj, i ∈ U, j ∈ V .
The following definition states when (EU, FV ) is an MHMM.

Definition 1. The joint process (EU, FV ) is an MHMM if

(a) EU is unobservable
(b) (EU, FV ) is a first order multivariate Markov chain
(c) EU(t) FV(t − 1)|EU(t − 1)
(d) FV(t) EU(t − 1), FV(t − 1)|EU(t).

In particular, condition (c) implies that EU is a first order Markov chain (see [6]).
A marginal process (ET , FR), T ⊂ U and R ⊂ V , in general, is not a hidden Markov model. The following theorem

clarifies when the properties of an MHMM are preserved after marginalizing the latent and observation processes. This
helps to specify under which restrictions all the attractive features of the hidden models (forecast distributions, smoothing
and filtering algorithms, etc.) are still valid for an MHMMwith marginalized components.

Theorem 1. Let ET and FR , T ⊂ U and R ⊂ V , be marginal processes of the latent and observation components of an MHMM
(EU, FV). The marginal process (ET , FR) is still an MHMM if the following conditions are fulfilled for all t ∈ N \ {0}

ET (t) EU\T (t − 1)|ET (t − 1) (1)

FR(t) EU\T (t)|ET (t). (2)
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