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a b s t r a c t

When the difference between samples is measured using a Euclidean-embeddable dissim-
ilarity function, observations and the associated variables can be displayed on a nonlinear
biplot. Furthermore, a nonlinear biplot is predictive if information on variables is added in
such a way that it allows the values of the variables to be estimated for points in the biplot.
In this paper an r dimensional biplot whichmaps the predicted value of a variable for every
point in the plot, is introduced. Using suchmaps it is shown that evenwith continuous data,
predicted values do not always vary continuously across the biplot plane. Prediction trajec-
tories that are appropriate for summarising such non-continuous prediction maps are also
introduced. These prediction trajectories allow information about two ormore variables to
be estimated even when the underlying predicted values do not vary continuously.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A biplot is a plot in which information about samples and variables is simultaneously displayed. The term ‘biplot’ was
first coined in [5], with the prefix ‘bi-’ intended to reflect that two different modes are displayed rather than the number of
dimensions used for the display. Typically biplots are 2-dimensional, making them easy to display on paper or on computer
screens, although this does not have to be the case.

This paper will deal with biplots in which samples are represented by points on the plot whose positions are determined
using classical scaling. Thus thismethod fallswithin the class ofmultidimensional techniques that produce low-dimensional
representations of points based on their dissimilarities.

Furthermore, it will be assumed that the functional form of the underlying dissimilarity function is known, and is
in the class of Euclidean-embeddable functions. This class of dissimilarity functions includes the familiar Pythagorean
distance, along with other dissimilarity functions such as the square-root of the City Block (Manhattan) distance and Clark’s
distance [10]. This means that the low-dimensional representation of the points is a projection of a high-dimensional
configuration that exactly represents the dissimilarities between points instead of rather an low-dimensional approximate
representation of dissimilarities obtained directly by, for example, minimising Stress or S-Stress.

The aimwill be to add information about variables to the plot in such a way that values of the variables can be associated
with the configuration of the points. This will primarily be done by adding trajectories to the plot, one for each variable. The
trajectories will in general be nonlinear, and hence such biplots are known as nonlinear biplots [9]. These trajectories will
be calculated by adding points that correspond to positions along an axis.
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In multidimensional scaling, different approaches are available to add points to an existing configuration of points (see
for example [2]). In this paper, an approach which matches the construction of the existing configuration will be followed.
That is, knowledge of the form of the dissimilarity function will be used to calculate the exact position of the extra points in
a sufficiently high-dimensional space. Projection is then used to place these points on the biplot.

In linear (PCA) biplots (biplots that are produced when Pythagorean distance is chosen to be the dissimilarity function),
the position of marker points on the trajectories representing variables depends on whether trajectories are to be used for
interpolation or prediction [8, p. 15]. That is, on whether the trajectory is going to be used to placing a new observation in
the most appropriate place on the biplot (interpolation) or to be used to determine what values of the original variables
are best associated with a point on the biplot, usually one of those already plotted (prediction). In nonlinear biplots the
trajectories themselves also generally depend on whether they are going to be used for interpolation or prediction (see for
example [11]). Here the focus will be on prediction trajectories. That is, trajectories complete with marker points, suitable
for prediction purposes.

On nonlinear biplots, prediction trajectories also depend on the method by which points in the biplot are to be projected
on to the trajectory. Here the focus will be on normal projection prediction trajectories. With normal projection prediction
trajectories, a projection P∗ of any point P in the biplot on the trajectory is where the line PP∗ intersects the trajectory
orthogonally. The position of P∗ along the trajectory then indicates the predicted value to be associated with P .

In the next section, existing methodology that has been used to calculate normal projection prediction trajectories for
nonlinear biplots will be described. This existing methodology relies on the assumption that the dissimilarity function is
smooth. This assumption is not always appropriate as there are Euclidean-embeddable dissimilarity functions that are not
smooth everywhere. Hence the existing methodology cannot be applied to all such dissimilarity functions. So in Section 3
an alternative approach to prediction in nonlinear biplots is introduced so that normal projection prediction trajectories can
be calculated regardless of whether the dissimilarity function is smooth.

As Section 3 will also show, the alternative approach to prediction introduced in this paper will allow prediction maps
for each variable to be created— that is, plots where every point is coloured according to the value it predicts. Suchmaps can
be used to explore how predicted values vary across the biplot plane. For example in Section 3.3 prediction maps will used
to illustrate a new observation about nonlinear biplots: the dimension of prediction regions (regions on the biplot that all
predict the same value of a variable) depends on whether the dissimilarity function is smooth. A mathematical explanation
for this observation will be given in Section 3.4.

Prediction maps, by colouring every point in the biplot, effectively preclude the depiction of more than one variable
on the same biplot. So, in Section 4 for the special case of 2-dimensional nonlinear biplots with 2-dimensional prediction
regions, a newmethod of calculating a prediction trajectory through the biplot space to approximate the prediction regions
is proposed. Then, by superimposing the prediction trajectories for the different variables on the same plot, the ability to
compare different variables on the same biplot is restored.

2. Displaying variables in nonlinear biplots

2.1. Preliminaries

Let X represent an n× p data matrix of n samples and p variables, with its ith row vector x′

i = (xi1, . . . , xip) representing
the ith sample. Further suppose that the dissimilarity between two samples xi and xj is measured by the dissimilarity
function, d(xi, xj) which is Euclidean-embeddable. That is, it is possible to find a configuration of n points inm-dimensional
space such that the Euclidean distance between the points representing samples i and j is d(xi, xj).

Let 1 be the doubly-centred matrix of dissimilarities multiplied by −
1
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where the (i, j)th element of D is d2(xi, xj), I is the n × n identity matrix and 1 is the n × 1 vector of ones. A consequence
of Euclidean-embeddability is that 1 is a positive semi-definite matrix [13]. So, via the spectral decomposition of 1, it is
possible to find a n × m real matrix Y such that YY ′

= 1 and that Y ′Y = 3 where 3 is a diagonal matrix with entries
λ1 ≥ λ2 ≥ · · · ≥ λm > 0 in the main diagonal. Let y ′

i be the ith row of Y . Then yi can be regarded as the location of the ith
sample inm-dimensional space such that for j = 1, . . . , n, the distance between yi and yj matches d(xi, xj).

Usually m = (n − 1) meaning that the exact correspondence between inter-point distances and dissimilarities cannot
normally be directly plotted on a low dimensional plot. However, as a result of least squares properties of spectral
decompositions, the best rank r approximation of 1 is obtained by simply using the first r columns of Y as the positions of
the samples (see, for example, [9]).

Suppose now that we are interested in a new point µ′
= (µ1, . . . , µp). Let d(µ) be the n × 1 vector of squared

dissimilarities between µ and the samples x1, . . . , xn. That is, d ′(µ) = (d2(x1, µ), . . . , d2(xn, µ)). Then, setting z ′(µ) =

(z1(µ), . . . , zm(µ), zm+1(µ))′ where

(z1(µ), . . . , zm(µ))′ =
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