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a b s t r a c t

The Bartlett-type adjustment is a higher-order asymptotic method for improving the
chi-squared approximation to the null distributions of various test statistics, which ensures
that the resulting test has size α + o(N−1), where 0 < α < 1 is the significance level and
N is the sample size. We continue our recent works on the third-order average local power
properties of several Bartlett-type adjusted tests. Strengthening the results in the 1990s,
the third-order optimality of the adjusted Rao test in a sense has been established even if
both the interest parameter and the nuisance parameter aremulti-dimensional. We briefly
discuss adjusted profile likelihood inference for handling the nuisance parameter.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We continue our recent works [10–13] on higher-order asymptotic theory of several statistics for testing a composite
hypothesis about a subvector of parameters. Here, the N−i/2-term is referred to as being the (i + 1)th-order, where N is
the sample size. A detailed historical review for comparing higher-order local powers, starting from the second-order local
power analyses [22], is omitted here to save space; see Kakizawa [13] and the references cited therein.

In the absence of nuisance parameter, Mukerjee [17,20] established that Rao’s (score) test under the third-order
conditions of size and local unbiasedness has the third-order optimality in terms of average local power criterion.
Mukerjee [21] additionally showed that Rao’s test even in the original form (not being adjusted for local unbiasedness and
only the size condition is being retained) has the third-order optimality, wherewe observe that ‘the test in the original form’
is nothing but the size-adjusted test with substitution of Cornish–Fisher’s type expansion for the percentile. On the other
hand, notmuchwork has yet been reported on the third-order local power properties in the presence of nuisance parameter,
except that Mukerjee [16,18] attempted to discuss the third-order optimality of Rao’s (adjusted) test under the assumption
of the global parameter orthogonality for the situation where both the interest parameter and the nuisance parameter are
scalar. He mentioned that the same argument is applicable even when the nuisance parameter is multi-dimensional.

The present paper addresses the comments in the review paper [20] that

if both the interest parameter and the nuisance parameter be multi-dimensional, then, as noted in Cox and Reid, one may
not in general be able to achieve an orthogonal parameterization. Anyway, it is strongly believed that the results discussed
here should have their counterparts even in such a situation.
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As a companion paper to Kakizawa [13], we are primarily concerned with the third-order local power properties of several
Bartlett-type adjusted tests. The Bartlett-type adjustment dates back to different three methods proposed by Chandra and
Mukerjee [2], Cordeiro and Ferrari [3], and Taniguchi [25] in alphabetical order. It is a higher-order asymptotic method for
improving the chi-squared approximation to the null distributions of various test statistics, which ensures that the resulting
test has size α + o(N−1), as in the size-adjusted test based on Cornish–Fisher’s type expansion for the percentile, where
0 < α < 1 is the significance level. Rao and Mukerjee [23,24] have compared the third-order point-by-point local powers
of three Bartlett-type adjustments [2,3,25] for the simple hypothesis on a scalar parameter. In recent years, there have
been renewed interests [9–11] due to the existence of infinitely many Bartlett-type adjustments for the multi-parameter
hypothesis testing.

By constructions (see Definitions 1 and 2 in Section 2), it will be convenient for us to define two types separately.
One is the generalized Bartlett-type adjustment (for short GB). The other is the generalized Cordeiro–Ferrari Bartlett-type
adjustment (for short GCF). We denote by TGB(N) and TGCF(N) the GB and GCF adjustments for a likelihood-based test statistic
T (N)

∈ TN,3 under consideration (see (3)). Kakizawa [13] derived the third-order average local power of the GB-adjusted
test TGB(N) > χ2

p1,α , where χ2
p1,α is the upper α-point of the central chi-squared distribution with p1 degrees of freedom,

and then established that even if both the interest parameter and the nuisance parameter are multi-dimensional, the
GB-adjusted Rao test has the third-order optimality. So, Mukerjee’s conjectural statement, as mentioned before, may be
solved in a sense. However, we know that Rao’s test statistic has many variants; e.g. R(N) and MR(N) (see (2)), for which the
adjusted tests RGB(N) > χ2

p1,α and MRGB(N) > χ2
p1,α have the identical average local power up to the third-order. That is,

the GB adjustment smooths out the distinctive features between R(N) and MR(N), and hence it may be more interesting to
compare them (announced at the end of Section 4 of [13]). This is the reason why we need to have further discussion, on
the basis of the GCF adjustment.

The contribution of the present paper is three fold. First, our results allow both the interest parameter and the nuisance
parameter to bemulti-dimensional, for which there is no assumption regarding the global parameter orthogonality. Second,
we elucidate that the adjusted Rao tests RGCF(N) > χ2

p1,α and MRGCF(N) > χ2
p1,α are, generally, discriminated in terms of the

third-order average local power, and that the former test RGCF(N) > χ2
p1,α has the third-order optimality in a large class of

the GB and GCF-adjusted tests. Third, we briefly discuss adjusted profile likelihood inference (e.g. [4,6]), which represents
an important tool for handling the nuisance parameter.

Although we focus on the i.i.d. case for notational simplicity, we arrive at the same conclusions even in a non-i.i.d. case
where some regularity conditions aremet for the log-likelihood derivatives according to the situations under consideration.
We retain throughout this paper the notation and conventions of Kakizawa [13] (see also [10,11]). The rest of this paper
is organized as follows. Section 2 contains the notation to be used throughout this paper. Section 3 derives an asymptotic
expansion formula for the (average) local power of the GCF-adjusted test TGCF(N) > χ2

p1,α . Section 4 describes main results.
Concluding remarks are given in Section 5.

2. Bartlett-type adjustments

2.1. Notation

We denote by P (N)
θ the θ-distribution of X1, . . . ,XN , which are i.i.d. random vectors (taking values of RdX ) according to

a density f (x, θ), θ ∈ 2 ⊂ Rp. For any sequence {Y (N)
}N≥1 of random variables having the form Y (N)

= gN(X1, . . . ,XN),
we use the pointwise notation Y (N)

= o(N)
θ (q, β) under P (N)

θ , if P (N)
θ [|Y (N)

| > d(logN)β ] = o(N−q) as N → ∞ for some
d > 0, q ≥ 0, and β ≥ 0. In what follows, we assume the same regularity conditions as in Kakizawa [13]. Suppose that
the parameter θ = (θ1, . . . , θp)

′ is composed of two parts, a parameter of interest θ(1) = (θ1, . . . , θp1)
′ and a nuisance

parameter θ(2) = (θp1+1, . . . , θp1+p2)
′; θ = (θ′

(1), θ
′

(2))
′

∈ 2 = 2(1) × 2(2) (say), where p = p1 + p2. We write
L(N)(θ) =

N
i=1 log f (Xi, θ). We want to test a composite hypothesis θ(1) = θ(1)0 against θ(1) ≠ θ(1)0, where θ(1)0 ∈ 2(1) is

specified while θ(2) ∈ 2(2) remains unspecified. Letθ(N)

ML ∈ 2 be the (unrestricted) maximum likelihood estimator (MLE) of

θ, and letθ(N)

(2)ML ∈ 2(2) be the restricted MLE of θ(2) under the constraint θ(1) = θ(1)0. We write

θ(N)

ML =


θ(1)0θ(N)

(2)ML


, θ(N)

ML =

θ(N)

(1)MLθ(N)

(2)ML


, and θĎ =


θ(1)0

θ
Ď
(2)


∈ 2,

with θ
Ď
(2) being the irrelevant true value of the nuisance parameter θ(2). For any (nonrandom/random) scalar or vector or

matrix function Q (·), we use the notationQ ,Q , and Q instead of Q (θ(N)

ML ), Q (θ(N)

ML ), and Q (θĎ), respectively.
The Rth partial derivative of the log density log f (x, θ) with respect to θ is denoted by

ℓj1···jR(x, θ) =
∂

∂θj1
· · ·

∂

∂θjR
log f (x, θ)
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