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a b s t r a c t

Performance accuracy of the Euclidean Distance Discriminant rule (EDDR) is studied in
the high-dimensional asymptotic framework which allows the dimensionality to exceed
sample size. Under mild assumptions on the traces of the covariance matrix, our new
results provide the asymptotic distribution of the conditional misclassification rate and
the explicit expression for the consistent and asymptotically unbiased estimator of the
expected misclassification rate. To get these properties, new results on the asymptotic
normality of the quadratic forms and traces of the higher power of Wishart matrix, are
established. Using our asymptotic results, we further develop two generic methods of
determining a cut-off point for EDDR to adjust the misclassification rates. Finally, we
numerically justify the high accuracy of our asymptotic findings along with the cut-off
determination methods in finite sample applications, inclusive of the large sample and
high-dimensional scenarios.
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1. Introduction

In this paper, we focus on the discrimination problem which is concerned with the allocation of a given object, x, a
random vector represented by a set of features (x1, . . . , xp), to one or two populations, Π1 and Π2 given by Np(µ1, Σ) and
Np(µ2, Σ), respectively, whereµ1 ≠ µ2 and common covariancematrixΣ is non-singular. Let {xgj}

Ng
j=1 be a random sample

of independent observations drawn from gth populationNp(µg , Σ), g = 1, 2. Let alsoN = N1+N2 denote the total sample
size and set n = N − 2. We are interested to explore the discrimination procedure that can accommodate p > n cases, with
the main focus on the performance accuracy in the asymptotic framework that allows p to grow together with n.

Clearly, the classical discriminant procedures, like Fisher linear discriminant rule, cannot be used when p > n since the
sample covariance matrix is singular and hence cannot be inverted. An intuitively appealing alternative considered in this
study focuses on geometrical properties of the sample space and re-formulates the classification problem in terms of the
Euclidean distance discriminant rule (EDDR): assign a new observation x to the ‘‘nearest’’ population Πg , i.e. assign to Πg
if it is on average closer to the data from Πg than to the data from the other population. Matusita’s papers (see [3,4]) are
perhaps the oldest references dealing with the discriminant rule based on distance measures, including the case when the
multivariate distributions underlying the data are not specified.
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Recently, Aoshima and Yata [2] have been considered the EDDR for the high-dimensional multi-class problem with
different class covariance matrices. In particular, they derived asymptotic conditions which ensure that the expected
misclassification rate converges to zero. Recent paper by Srivastava [8] used the Moore–Penrose inverse of the estimated
covariance matrix and suggested a second-order approximation of the expected error rate in high-dimensional data.

We, in this study, focus on the asymptotic behavior of the misclassification rates of EDDR. Continuing with the normality
assumption, with µg acting as the center of the Πg ’s distribution we define

T0(x) = ∥x − µ2∥
2
− ∥x − µ1∥

2, (1.1)

and its sample based version asT (x) = ∥x − x2∥2
− ∥x − x1∥2 (1.2)

where ∥ · ∥ denotes the Euclidean norm and xg ’s denote the sample mean vectors, g = 1, 2. Hence, each term in (1.1) and
(1.2) represents the distance between the observed vector x and the centroid of Πg ’s or its sample based counterpart.

The natural advantage of using T (x) for classifying high-dimensional data is its ability to mitigate the effect of
dimensionality on the performance accuracy. Indeed, as it is seen from (1.2),T (x) utilizes only the marginal distribution
of the p variables, thereby naturally reducing the effect of large p in implementations. But the dimensionality has impact on
the classification accuracy. To show this, we first point out that classifierT (x) has a bias. In fact,

E[T (x)|x ∈ Πg ] = (−1)g−1
∥µ1 − µ2∥

2
+

N1 − N2

N1N2
trΣ, g = 1, 2,

and thus the impact of dimensionality is implied by the quantity (N1 − N2)trΣ/(N1N2). In this study, we introduce the
bias-corrected versionT (x) defined as

T (x) = ∥x − x2∥2
− ∥x − x1∥2

−
N1 − N2

N1N2
tr S, (1.3)

where the subtraction of (N1−N2)/(N1N2)tr S in (1.3) is to guarantee that E[T (x)|x ∈ Πg ] = (−1)g−1
∥µ1−µ2∥

2, g = 1, 2.
Here, S = (1/n)

2
g=1

Ng
j=1(xgj − xg)(xgj − xg)′.

Now, the EDDR given by T (x) places a newobservation x toΠ1 if T (x) > c̃ , and toΠ2 otherwise, where c̃ is an appropriate
cut-off point. Then, for a specific c̃ , the performance accuracy of EDDR will be represented by the pair of misclassification
rates that result. Precisely, we define the conditional misclassification rate of EDDR by

ce(2|1) = Pr(T (x) ≤ c̃|x ∈ Π1, x1, x2, S)

and its expected version by e(2|1) = E[ce(2|1)], where the expectation is taken with respect to x1, x2 and S. Our main
objective is to derive characteristic properties of both conditional and expected misclassification rate in high-dimensional
data.

In many practical problems one type of misclassification rate is generally regarded as more serious than the other,
examples include e.g. medical applications associated with the diagnosis of diseases. In such a case, it might be desired
to determine the cut-off c̃ to obtain a specified probability of the error, or at least to approximate a specified probability.
Then, one might base the choice of c̃ on the expected misclassification rate. This method, denoted in what follows by M1,
suggests to set a cut-off point c̃ such that

M1 : e(2|1) = E[ce(2|1)] = α,

where α is a value given by experimenters.
On the other hand, one may exploit the confidence of the conditional error rate when determining c̃; we denote this

method by

M2 : Pr(ce(2|1) < eu) = 1 − β,

where 1 − β is the desired level of confidence and eu is an upper bound.
Both determination methodsM1 andM2 have been established by using large sample approximation, see [1,5,6]. In this

study, we extend the consideration to the high-dimensional case. Our main theoretical results provide the asymptotically
unbiased and consistent estimator of e(2|1) and the limit distribution of ce(2|1) under general assumptions covering the
case when p > n. In fact, M1 and M2 procedures can be considered as specific examples of using our generic results in the
theory of EDDR in high-dimensions.

The remaining part of the paper is organized as follows. In Section 2, we derived the asymptotically unbiased and
consistent estimator of e(2|1). Further, the limiting approximations of the cut-off point defined by M1 are established by
using this estimator. In Section 3, two estimators of the confidence-based cut-off point defined byM2 are proposed, forwhich
the asymptotic normality of the conditional error rate is shown. Section 4 summaries the results of numerical experiments
justifying the validity of the suggested cut-off estimators for various strength of dependence underlying the data along with
a number of high-dimensional scenarios where p far exceeds the sample size. We conclude in Section 5.
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