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a b s t r a c t

This paper addresses the problem of estimating the mean vector of a singular multivariate
normal distributionwith anunknown singular covariancematrix. Themaximum likelihood
estimator is shown to be minimax relative to a quadratic loss weighted by the
Moore–Penrose inverse of the covariance matrix. An unbiased risk estimator relative to
the weighted quadratic loss is provided for a Baranchik type class of shrinkage estimators.
Based on the unbiased risk estimator, a sufficient condition for theminimaxity is expressed
not only as a differential inequality, but also as an integral inequality. Also, generalized
Bayes minimax estimators are established by using an interesting structure of singular
multivariate normal distribution.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Statistical inference with the determinant and the inverse of sample covariance matrix requires nonsingularity of the
sample covariance matrix. However in practical cases of data analysis, the nonsingularity is not always satisfied. The
singularity occurs for many reasons, but in general such singularity is very hard to handle. This paper treats a singular
multivariate normal model, which yields a singular sample covariance matrix, and aims to provide a series of decision-
theoretic results in estimation of the mean vector.

The singular multivariate normal distribution model and the related topics have been studied for a long time in the
literature. For the density function, see [7,12,15]. Khatri [7] and Rao [12] derived the maximum likelihood estimators
for the mean vector and the singular covariance matrix. Srivastava [13] and Díaz-García, et al. [3] studied central and
noncentral pseudo-Wishart distributions which have been used for developing distribution theories in the problems of
testing hypotheses. However, little is known about a decision-theoretic approach to estimation in the singular model.

To specify the singular model addressed in this paper, let X and Yi (i = 1, . . . , n) be p-dimensional random vectors
having the stochastic representations
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X = θ + BZ0,

Yi = BZi, i = 1, . . . , n,
(1.1)

where Z0, Z1, . . . , Zn aremutually and independently distributed asNr(0r , Ir), and θ andB are, respectively, a p-dimensional
vector and a p × r matrix of unknown parameters. Then we write X ∼ Np(θ,6) and Yi ∼ Np(0p,6) (i = 1, . . . , n), where
6 = BBt . Assume that

r ≤ min(n, p),

and B is of full column rank, namely 6 is a positive semi-definite matrix of rank r . In the case when r < p, technically
speaking,Np(θ,6) is called the singular multivariate normal distribution withmean vector θ and singular covariance6. For
the definition of the singular multivariate normal distribution, see [7], [12, Chapter 8] and [15, p. 43].

Denote by6+ theMoore–Penrose inverse of6. Consider the problemof estimating themeanvector θ relative to quadratic
loss weighted by 6+,

L(δ, θ|6) = (δ − θ)t6+(δ − θ), (1.2)

where δ is an estimator of θ based on X and Y = (Y1, . . . , Yn)
t . The accuracy of estimators is compared by the risk function

R(δ, θ|6) = E[L(δ, θ|6)], where the expectation is taken with respect to (1.1).
A natural estimator of θ is the unbiased estimator δUB = X , which is also the maximum likelihood estimator as pointed

out by Khatri [7, p. 276] and Rao [12, p. 532]. This paper considers improvement on δUB via the Baranchik [1] type class of
shrinkage estimators

δSH =


1 −

φ(F)
F


X, F = X tS+X,

where φ(F) is a bounded and differentiable function of F .
It is worth noting that, instead of F in δSH , we may use F−

= X tS−X , where S− is a generalized inverse of S . Since the
generalized inverse is not unique, it may be troublesome to consider which we employ as the generalized inverse. On the
other hand, the Moore–Penrose inverse is unique and it is easy to discuss its distributional property. See [14] for interesting
discussion on the Hotelling type T -square tests with the Moore–Penrose and the generalized inverses in high dimension.

The rest of this paper is organized as follows. In Section 2, we introduce the definition of the Moore–Penrose inverse
and its useful properties. We then set up a decision-theoretic framework for estimating θ and derive some properties of
estimators and their risk functions which are specific to the singular model. The key tool for their derivations is the equality

SS+
= 66+,

which holds with probability one, where S = Y tY and S+ is the Moore–Penrose inverse of S . In Section 2, we also prove
the minimaxity of δUB. In Section 3, we obtain sufficient conditions for the minimaxity of δSH . These conditions are given not
only by a differential inequality, but also by an integral inequality. In Section 4, an empirical Bayesmotivation is given for the
James–Stein [6] type shrinkage estimator and its positive part estimator. Also, Section 4 suggests a hierarchical prior in the
singular model and shows that the resulting generalized Bayes estimators are minimax. Section 5 provides some remarks
on related topics.

2. Estimation in the singular normal model

2.1. The Moore–Penrose inverse and its useful properties

We begin by introducing the following notations which will be used through the paper. Let O(r) be the group of
orthogonal matrices of order r . For p ≥ r , the Stiefel manifold is denoted by Vp,r = {A ∈ Rp×r

: AtA = Ir}. It is noted
that Vr,r = O(r). Let Dr be a set of r × r diagonal matrices whose diagonal elements d1, . . . , dr satisfy d1 > · · · > dr > 0.

As an inverse matrix of a singular covariance matrix, we use the Moore–Penrose inverse matrix, which is defined as
follows:

Definition 2.1. For a matrix A, there exists a matrix A+ such that (i) AA+A = A, (ii) A+AA+
= A+, (iii) (AA+)t = AA+

and (iv) (A+A)t = A+A. Then A+ is called the Moore–Penrose inverse of A.

The following basic properties and results on the Moore–Penrose inverse matrix are useful for investigating properties
of shrinkage estimators. Lemmas 2.1 and 2.2 are due to Harville [5, Chapter 20].

Lemma 2.1. The Moore–Penrose inverse A+ has the following properties:

(1) A+ uniquely exists;
(2) (A+)t = (At)+;
(3) A+

= A−1 for a nonsingular matrix A.
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