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a b s t r a c t

Amultivariate semiparametric partial linear model for both fixed and random design cases
is considered. Earlier, in Brown et al. (2014), themodel has been analyzed using a difference
sequence approach. In particular, the functional component has been estimated using a
multivariate Nadaraya–Watson kernel smoother of the residuals of the linear fit. Moreover,
this functional component estimator has been shown to be rate optimal if the Lipschitz
smoothness index exceeds half the dimensionality of the functional component domain.
In the current manuscript, we take this research further and show that, for both fixed and
random designs, the rate achieved is the minimax rate under both risk at a point and the
L2 risk. The result is achieved by proving lower bounds on both pointwise risk and the L2
risk of possible estimators of the functional component.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametric models have a long history in statistics and have received considerable attention in the last several
decades. The main reason they are of considerable interest is that, quite often, the relationships between the response and
predictors are very heterogeneous in the same model. Some of the relationships are clearly linear whereas the detailed
information about others is hard to come by. Inmany situations, a small subset of variables is presumed to have an unknown
relationship with the response that is modeled nonparametrically while the rest are assumed to have a linear relationship
with it. As an example, Engle, Granger, Rice, and Weiss [3] studied the nonlinear relationship between temperature and
electricity usage where other related factors, such as income and price, are parameterized linearly.

The model we consider in this paper is a semiparametric partial linear multivariate model

Yi = a + X ′

iβ + f (Ui)+ εi (1.1)

where Xi ∈ Rp and Ui ∈ Rq, β is an unknown p×1 vector of parameters, a is an unknown intercept term, f (·) is an unknown
function and εi are independent and identically distributed random variables with mean 0 and constant variance σ 2. We
consider two cases with respect to U: a random design case whereby Ui is a q-dimensional random variable and a fixed
design case with Ui being a q-dimensional vector where each coordinate is defined on an equispaced grid on [0, 1]. In the
fixed design case the errors are independent of Xi while in the randomdesign case they are independent of (X ′

i ,Ui). To obtain
meaningful results, the function f is assumed to belong in the Lipschitz ball Λα(M) where α is the Lipschitz exponent. Of
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particular interest is the fact that, to be coherent, in the fixed design casewhen q > 1 themodel (1.1)must havemultivariate
indices. The version with q = 1 was earlier considered in [11] while [1] considered the case of q > 1 in detail. The latter
defined two conceptually similar difference based estimators of the parametric component for fixed and random design
cases, respectively, and showed

√
n asymptotic normality of both of these estimators. Moreover, it was also established

that, in order for the estimator of the parametric component to be efficient, the order of the difference sequence must go to
infinity. Brown, Levine andWang [1] also obtained a uniformover a Lipschitz ballΛα(M) convergence result for an estimator
of the functional component, establishing the rate of convergence n−2α/(2α+q).

To the best of our knowledge, the optimal in the minimax sense rate of convergence for estimators of the nonparametric
component of multivariate partial linear model (1.1) has not been established. Since results of [1] amount to establishing
the upper bound of that rate, the remaining task is to establish the lower bound. In this manuscript, we are doing just that
for both fixed and random designs as well as for the two different functional distances. The first distance considered is the
difference at a given fixed point and the second is that L2[0, 1]q distance. A number of different techniques are used to obtain
these results.

Before proceeding, it is probably useful to recap quickly how the functional component estimator is constructed. The
detailed discussion is available in [1]. We only describe what happens in the fixed design case. We begin with (normalized)
‘‘diagonal’’ differences of observations Yi. As in Cai, Levine and Wang [2] and Munk, Bissantz, Wagner and Freitag [9], we
select first a set of q-dimensional indices J = {(0, . . . , 0), (1, . . . , 1), . . . , (γ , . . . , γ )}. Some specialized notation is needed
first to describe resulting differences. For any vector u ∈ Rq, a real number v and a set A ⊂ Rq, we define the affine
transformation of the set A is the set B = u + vA = {y ∈ Rq

: y = u + va, a ∈ A ⊂ Rq
}; then, we introduce a set R

that consists of all indices i = (i1, . . . , iq) such that R + J ≡ {(i + j)|i ∈ R, j ∈ J} ⊂ {1, . . . ,m}
q. Let a subset of R + J

corresponding to a specific i ∈ R be i+ J . In order to define a difference of observations of order γ , we define first a sequence
of real numbers {dj} such that

γ

j=0 dj = 0, and
γ

j=0 d
2
j = 1 and

γ

j=0 djj
k

= 0 for any power k = 1, . . . , γ . Moreover,

denote ck =
γ−k

i=0 didi+k. Then the difference of order γ ‘‘centered’’ around the point Yi, i ∈ R is defined as

Di =


j∈J

djYi+J . (1.2)

Note that this particular choice of the set J makes numbering of difference coefficients dj very convenient; since each
q-dimensional index j consists of only identical scalars, that particular scalar can be thought of as a scalar index of d; thus,

j∈J dj is the same as
γ

j=0 dj whenever needed. Now, let Zi =


j∈J djXi+J , δi =


j∈J djf (Ui+J), and ωi =


j∈J djεi+J , for
any i ∈ R. Then, by differencing the original model (2.1), one obtains Di = Z ′

iβ + δi + ωi for all i ∈ R. The ordinary least
squares solution for β can then be written as

β̂ = argmin

i∈R

(Di − Z ′

iβ)
2.

In [1], the estimator of the nonparametric component f has been constructed in several stages. First, the vector coefficient β
has been estimated as described above. Next, the intercept ahas been estimated using the natural estimator â =

1
n


i≤n(Yi−

X ′

i β̂). Finally, the multivariate Nadaraya–Watson kernel smoother has been applied to the residuals ri = Yi − â − X ′

i β̂ from
that fit to estimate the unknown function f . To construct the kernel smoother, one can, for example, select a univariate kernel
function K(U l) for a specific coordinate U l, l = 1, . . . , q such that


K(U l) dU l

= 1 and that has ⌊α⌋ vanishing moments.
Next, one would usually chose an asymptotically optimal bandwidth h = n−1/(2α+q) (see, for example, [4]), and define the
univariate rescaled kernel asKh(U l) = h−1K(h−1U l). The q-dimensional product kernel is, thenKh(U) = h−q q

l=1 K(h
−1U l).

Armed with this framework, the Nadaraya–Watson kernel weights can be defined as Wi,h(U − Ui) =
Kh(U−Ui)
i≤n Kh(U−Ui)

Finally,
the resulting kernel estimator of the function f (U) can then be defined as

f̂ (U) =


i≤n

Wi,h(U − Ui)ri.

Note that in the univariate case, Wang, Brown and Cai [11] used the Gasser–Müller kernel to obtain the estimator of the
functional component; for the multivariate case, Nadaraya–Watson estimator seems to be a better choice because it can be
generalized easier to the multivariate case.

The next two sections present detailed results for the fixed and random design cases, respectively.

2. Optimal rates of convergence for the deterministic design case

We consider the following semiparametric model

Yi = a + X ′

iβ + f (Ui)+ εi (2.1)

where Xi ∈ Rp,Ui ∈ S = [0, 1]q ⊂ Rq, εi are iid zeromean random variableswith variance σ 2 and finite absolutemoment of
the order δ+2 for some small δ > 0, that is, E |εi|

δ+2 < ∞. As noticed earlier in Brown, Levine andWang [1], themodel (2.1)
must havemultidimensional indices i = (i1, . . . , iq)′ to be coherent. Throughout this work, wewill use bold font i to refer to
multivariate indices and regular font to refer to coordinates of amultivariate index. For some positive integerm, we can take



Download English Version:

https://daneshyari.com/en/article/1145431

Download Persian Version:

https://daneshyari.com/article/1145431

Daneshyari.com

https://daneshyari.com/en/article/1145431
https://daneshyari.com/article/1145431
https://daneshyari.com

