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a b s t r a c t

We consider two Bayesian hierarchical one-way random effects models and establish geo-
metric ergodicity of the corresponding random scan Gibbs samplers. Geometric ergodicity,
along with a moment condition, guarantees a central limit theorem for sample means and
quantiles. In addition, it ensures the consistency of variousmethods for estimating the vari-
ance in the asymptotic normal distribution. Thus our results make available the tools for
practitioners to be as confident in inferences based on the observations from the random
scan Gibbs sampler as they would be with inferences based on random samples from the
posterior.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that for i = 1, . . . , K

Yi|θi, γi
ind
∼ N(θi, γ

−1
i )

θi|µ, λθ , λi
ind
∼ N(µ, λ−1

θ λ−1
i )

(µ, λθ , γ1, . . . , γK , λ1, . . . , λK ) ∼ p(µ, λθ , γ1, . . . , γK , λ1, . . . , λK )

(1)

where p is a generic proper prior. Eventuallywewill consider twodistinct choices for the prior p, butwe leave the description
until Section 2. In both cases, the hierarchy in (1) yields a proper posterior which is intractable in the sense that the posterior
quantities, such as expectations or quantiles, required for Bayesian inference are not available in closed form. Thus we will
consider the use of Markov chain Monte Carlo (MCMC) methods.

Let y denote all of the data, λ = (λ1, . . . , λK )T , ξ = (θ1, . . . , θK , µ)T , and γ = (γ1, . . . , γK )T . In Section 2 we will see
that the specific forms of the posterior full conditional densities f (ξ |λθ , λ, γ , y), f (λθ |ξ, λ, γ , y), f (λ|ξ, λθ , γ , y) and f (γ |ξ,
λθ , λ, y) are available and hence it is easy to construct Gibbs samplers to help perform posterior inference. Gibbs samplers
can be implemented in either a deterministic scan or a random scan, among other variants [22,13]. Although deterministic
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scanMCMC algorithms are currently popular in the statistics literature, random scan algorithms were some of the first used
in MCMC settings [25,9] and remain useful in applications [20,28]. Random scan Gibbs samplers can also be implemented
adaptively while the deterministic scan version cannot. In addition, there has been recent interest in the theoretical
properties of random scan algorithms [2,13,18,21,33,36].

We will study the random scan Gibbs sampler which is now described. Let r = (r1, r2, r3, r4) with r1 + r2 + r3 + r4 = 1
and each ri > 0 where we call r the selection probabilities. If (ξ (n), λ

(n)
θ , λ(n), γ (n)) is the current state of the Gibbs sampler,

then the (n + 1)st state is obtained as follows.
Draw U ∼ Uniform(0, 1) and call the realized value u.

If u ≤ r1, draw ξ ′
∼ f (ξ |λ

(n)
θ , λ(n), γ (n), y) and set

(ξ (n+1), λ
(n+1)
θ , λ(n+1), γ (n+1)) = (ξ ′, λ

(n)
θ , λ(n), γ (n))

else if r1 < u ≤ r1 + r2, draw λ′

θ ∼ f (λθ |ξ
(n), λ(n), γ (n), y) and set

(ξ (n+1), λ
(n+1)
θ , λ(n+1), γ (n+1)) = (ξ (n), λ′

θ , λ
(n), γ (n))

else if r1 + r2 < u ≤ r1 + r2 + r3, draw λ′
∼ f (λ|ξ (n), λ

(n)
θ , γ (n), y) and set

(ξ (n+1), λ
(n+1)
θ , λ(n+1), γ (n+1)) = (ξ (n), λ

(n)
θ , λ′, γ (n))

else if r1 + r2 + r3 < u ≤ 1, draw γ ′
∼ f (γ |ξ (n), λ

(n)
θ , λ(n), y) and set

(ξ (n+1), λ
(n+1)
θ , λ(n+1), γ (n+1)) = (ξ (n), λ

(n)
θ , λ(n), γ ′).

Our goal is to investigate the conditions required for the random scan Gibbs sampler to produce reliable simulation
results. Specifically, we will investigate conditions under which the Markov chain is geometrically ergodic, which we now
define. Let X = RK

× R × R+ × RK
+

× RK
+
and B(X) denote the Borel sets. Let Pn

: X × B(X) → [0, 1] denote the n-step
Markov kernel for the random scan Gibbs sampler so that if A ∈ B(X) and n ≥ 1

Pn((ξ (1), λ
(1)
θ , λ(1), γ (1)), A) = Pr((ξ (n+1), λ

(n+1)
θ , λ(n+1), γ (n+1)) ∈ A | (ξ (1), λ

(1)
θ , λ(1), γ (1))).

Let F denote the posterior distribution associated with (1) and ∥ · ∥ denote the total variation norm. Then the random scan
Gibbs sampler is geometrically ergodic if there exists M : X → [0, ∞) and t ∈ [0, 1) such that for all ξ, λθ , λ, γ and
n = 1, 2, . . .

∥Pn((ξ , λθ , λ, γ ), ·) − F(·)∥ ≤ M(ξ , λθ , λ, γ ) tn. (2)

Geometric ergodicity is a useful stability property for MCMC samplers [16,32] in that it ensures rapid convergence of the
Markov chain since t < 1, the existence of a central limit theorem (CLT) [1,12,14,30], and consistency of various methods
to estimate asymptotically valid Monte Carlo standard errors [5,7,8,15]. To see the connection between (2) and the CLT let
g : X → R and f be the posterior density and suppose we want to calculate

µg :=


X
g(ξ , λθ , λ, γ )f (ξ , λθ , λ, γ |y) dξ dλθ dλ dγ .

Assuming µg exists and the Markov chain is irreducible, aperiodic and Harris recurrent (see Meyn and Tweedie [26] for
definitions and Section 2 for discussion of these conditions for our two random scan Gibbs samplers), then, as n → ∞,

µn :=
1
n

n
i=1

g(ξ (i), λ
(i)
θ , λ(i), γ (i)) → µg with probability 1.

Of course, µn will be much more valuable if we can equip it with an asymptotically valid standard error. If the random scan
Gibbs sampler is geometrically ergodic and

X
g2(ξ , λθ , λ, γ )f (ξ , λθ , λ, γ |y) dξ dλθ dλ dγ < ∞, (3)

then there exists δ2
g < ∞ such that, as n → ∞, and for any initial distribution

√
n(µn − µg)

d
→ N(0, δ2

g ). (4)

The quantity δ2
g is complicated [10], but if theMarkov chain is geometrically ergodic there are severalmethods for estimating

it consistently [7,12,15]. This then allows construction of asymptotically valid interval estimates of µg to describe the
precision of µn [5] and hence the reliability of the simulation. A similar approach is available for estimating posterior
quantiles which, of course, are often useful for constructing posterior credible intervals; see the recent work of Doss et al.
[3].
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