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a b s t r a c t

Copulas are a useful tool to model multivariate distributions. While there exist various
families of bivariate copulas, much less work has been done when the dimension is higher.
We propose a class of multivariate copulas based on products of transformed bivariate
copulas. The analytical forms of the copulas within this class allow to naturally associate
a graphical structure which helps to visualize the dependencies and to compute the full
joint likelihood even in high dimension. Numerical experiments are conducted both on
simulated and real data thanks to a dedicated R package.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The modeling of random multivariate events is a central problem in various scientific domains and the construction of
multivariate distributions able to properly model the variables at play is challenging. A useful tool to deal with this problem
is the concept of copula. Let (X1, . . . , Xd) be a random vectorwith distribution function F . Let Fi be the (continuous)marginal
distribution function of Xi, i = 1, . . . , d. From Sklar’s Theorem [27], there exists a unique function C such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (x1, . . . , xd) ∈ Rd. (1)

This function C is called the copula of F and is the d-dimensional distribution function of the random vector (F1(X1), . . . ,
Fd(Xd)). For a general account on copulas, see, e.g. [24]. Copulas are interesting since they permit to impose a dependence
structure on pre-determinedmarginal distributions.While there exist many copulas in the bivariate case, it is less clear how
to construct copulas in higher dimension. In the presence of non-Gaussianity and/or tail dependence, various constructions
have been adopted, such as, for instance, Archimedean copulas [13], Vines [1] or elliptical copulas [5].

Archimedean copulas write

C(u1, . . . , ud) = ψ(ψ−1(u1)+ · · · + ψ−1(ud)),

where ψ is a function from [0,∞) to [0, 1] which has to verify certain properties for the copula to be well defined,
see [23]. The generator ψ may be chosen in a given parametric family of functions. For instance, ψθ (t) = exp(−t1/θ ),
θ ≥ 1 yields the Gumbel family of copulas, see Example 1 in Section 3. Since there is a single parameter to model a
d-dimensional phenomenon, thismodel is recognized not to be very flexible. Indeed, Archimedean copulas are exchangeable
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i.e. C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)) for any permutation π of {1, . . . , d}. In particular, all pairs of variables share the
same statistical distribution. These properties may not be desirable in practice.

Vines, on the opposite, achieve greater flexibility but at the price of increased complexity. As an illustration, we briefly
describe a canonical vine copula – one of the two main types of vine copula models – through a decomposition of its
density [1]:

c(u1, . . . , ud) =

d−1
j=1

d−j
i=1

cj,j+1|1,...,j−1

F(uj|u1, . . . , uj−1), F(uj+i|u1, . . . , uj−1)


where cj,j+1|1,...,j−1(·, ·) is the (conditional) bivariate density of the jth and (j+1)th variables andwhere F(·|·) represents the
conditional distribution of the variables at play. When d = 10, there are more than one million possible decompositions,
and, for each decomposition, there are many choices of parametric families for each conditional bivariate density in the
product.

A third class of copulas to be presented in this introduction is the class of elliptical copulas. An elliptical copula is the
copula of an elliptical distribution, whose density is given by [5,22]

f (x) = |Σ |
−1/2g


(x − µ)⊤Σ−1(x − µ)


, x ∈ Rd,

for some positive definite matrix Σ and vector µ. The function g is called the density generator. This model implies, in
particular, that if X has density f as above, then X −µ is distributed asµ−X . This, in turn, implies that the lower and upper
tail dependence coefficients (defined in Section 3) are equal, which is unrealistic in some applications, as, for example,
extreme-value statistics. Moreover, elliptical copulas have in general as many as O(d2) parameters and it is thus difficult to
carry out maximum likelihood inference [3] when d is large.

The main contribution of this paper is to propose a new class of multivariate copulas based on a product of bivariate
copulas. The product is performed following the edges of a graph which permits to visualize the dependencies and to
efficiently compute the likelihood, even in high dimension. The use of bivariate copulas as building blocks allows to take
profit of the numerous parametric families proposed in the copula literature.

The rest of this paper is organized as follows. The newcopulamodel is introduced in Section 2. Some linkswith Liebscher’s
construction [19] are stressed. Section 3 discusses some properties of the new copulas. The ability to construct new extreme-
value models is highlighted. The dependence properties of bivariate marginals of the proposed class are also established.
More specifically, some bounds are given on the most popular dependence coefficients (Spearman’s rho and Kendall’s tau)
and on tail dependence coefficients. Section 4 is dedicated to the numerical aspects. A simulation procedure is provided
and estimation by maximization of the pseudo-likelihood is discussed. The proposed copula model is applied in Section 5
to simulated and real datasets. Appendix gathers some proofs and technical details about the estimation procedure.

2. Constructing high dimensional copulas by multiplying bivariate ones

In this section, we propose a way to build high-dimensional copulas starting from bivariate ones. This construction
allows one to take advantage of the large number of bivariate copulas introduced in the statistical literature. It is well
known that a product of copulas is not a copula in general, the margins being no longer uniform. Roughly speaking, the new
copula is thus obtained by multiplying bivariate copulas after a suitable transformation of the margins. The main feature
of the new copula is that it can be associated with a graph describing the dependencies between the variables. To be more
specific, let U1, . . . ,Ud be d standard uniform random variables and denote by {ij} the index of the pair (Ui,Uj). Introduce
E ⊂ {{ij} : i, j = 1, . . . , d, j > i} a subset of the set of all pair indices. The cardinal of E, denoted by |E|, is less or equal to
d(d − 1)/2. The pair index e ∈ E is said to contain the variable index i if there exists k ≠ i such that e = {ik} or e = {ki}.
For all i = 1, . . . , d, let N(i) be the set of neighbors of i defined as N(i) = {e ∈ E such that e contains i} and introduce
ni := |N(i)|. It is then natural to associate a graph to the set E as follows: an element e = {ij} ∈ E is an edge linking Ui and
Uj in the graph whose nodes are the variables U1, . . . ,Ud. The example E = {{12}, {24}, {23}, {35}} is illustrated in Fig. 1.
For u = (u1, . . . , ud) ∈ [0, 1]d, consider the functional

C(u1, . . . , ud) =


{ij}∈E

C̃ij


u1/ni
i , u

1/nj
j


, (2)

where the C̃ij’s are arbitrary bivariate copulas for all {ij} ∈ E. Keeping in mind the graphical representation associated with
E, the function C defined in (2) is a product over the edges of the graph. For instance, when E = {{12}, {24}, {23}, {35}} as
in Fig. 1, function (2) can be written as

C(u1, u2, u3, u4, u5) = C̃12


u1, u

1/3
2


C̃24


u1/3
2 , u4


C̃23


u1/3
2 , u1/2

3


C̃35


u1/2
3 , u5


.

In the following, (2) is referred to as the Product of Bivariate Copulas (PBC) copula, or PBCmodel. The next result establishes
that (2) is a copula.

Proposition 1. PBC (2) is a well defined copula.
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