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a b s t r a c t

We consider a multivariate linear response regression in which the number of responses
and predictors is large and comparable with the number of observations, and the rank of
the matrix of regression coefficients is assumed to be small. We study the distribution of
singular values for the matrix of regression coefficients and for the matrix of predicted
responses. For both matrices, it is found that the limit distribution of the largest singular
value is a rescaling of the Tracy–Widom distribution. Based on this result, we suggest al-
gorithms for the model rank selection and compare themwith the algorithm suggested by
Bunea, She and Wegkamp. Next, we design two consistent estimators for the singular val-
ues of the coefficient matrix, compare them, and derive the asymptotic distribution for one
of these estimators.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paperwe are concernedwith the reduced rank variant of themultivariate response regressionmodel.We are given
N observations of the predictors Xi ∈ Rp and responses Yi ∈ Rr , which are assumed to be related by the linear regression
model:

Y = XA + U, (1)

where A is an unknown p-by-r matrix and U is a noise matrix. This model is ubiquitous in statistics, signal processing, and
numerical analysis.

On methodological grounds one often postulates that the responses depend only on a small number of factors which are
linear combinations of the predictors. This postulate leads to a model, in which A is assumed to be a low-rank matrix:

A =

s
j=1

θjujv
∗

j , (2)

where

uj ∈ Rp


and {vi ∈ Rr} are two fixed orthonormal vector systems. This model appeared already in Anderson [1],

and it was named reduced-rank regression in Izenman [17]. In some contexts, this model is also known under the names
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simultaneous linear prediction (Fortier [13]) and redundancy analysis (van denWollenberg [34]), both of which assume thatU
has the covariancematrix equal to σ 2I . The reduced-rankmodel has been intensively studied, andmany results are collected
in the monograph by Reinsel and Velu [30].

In this paper, we assume that U has the covariance matrix equal to σ 2I , and we are interested in the situation in which
all three variables, p, r , and N , grow at the same rate.

Assumption A1. It is assumed that as N → ∞, N
p → 1 + λ ≥ 1 and N

r → µ > 0.

It is also useful to define β
def
= limN→∞

p
r = µ/ (1 + λ).

The studies devoted to the reduced-rank regression in this setup are relatively recent and include Bunea, She, and
Wegkamp [9] and Giraud [14].

We address the following questions. First, is it possible to detect that the true matrix A is not zero? If yes, then how do
we estimate the rank and singular values of A?

Our approach to these questions is based on the study of the statistical properties of the standard least squares estimatorA def
= X \ Y ≡


X∗X

−1 X∗Y

and the matrix of fitted responses:Y def
= XA.

By using this approach, we will develop a rank-selection algorithm which performs better than the algorithm from [9]
in a certain range of parameters and is simpler than the algorithm in [38]. In addition, we will develop tools for consistent
estimation of singular values θi. The paper [9] does not address this issue, since its focus is on minimizing the prediction
error, in particular on bounds for E

XA − XA, whereA is an estimator of A and the expectation is over randomness in U .
The rest of the paper is organized as follows. Section 2 describes the major results. Section 3 provides the details of the

proofs. Section 4 recapitulates the results. Appendix provides a proof for the theorem about the limiting distribution of
singular values ofA.
2. Major results

2.1. Tests of the null hypothesis

Let X be a p-by-r real Gaussian matrix: each row is an independent observation from N (0, Σ). Then, an r-by-r matrix
X∗X is said to be aWishart matrixwith distributionWr(Σ, p).

A randomm-by-mmatrix X is said to belong to the (real) Jacobi ensemblewith parameters α1 and α2, if its distribution is
invariant with respect to orthogonal transformations and the distribution of its eigenvalues is given by

f (α1,α2) (λ1, . . . , λm) =
1
c

m
j=1

λ
α1
j (1 − λj)

α2


1≤j<k≤m

λj − λk
 . (3)

The following result is fundamental for the analysis of matricesA andY .
Theorem 2.1. (i) Suppose that U is an N-by-r matrix with i.i.d standard real Gaussian entries, and X is an N-by-p full-rank

matrix (N ≥ p) independent of U. Then the squared singular values of Y def
= X(X \ U) are distributed as the eigenvalues of

the Wishart matrix with distribution Wr(I, p).
(ii) In addition, suppose that X has i.i.d standard real Gaussian entries. Let s2i be the squared singular values of A def

= X \ U and
fi = s2i /(1 + s2i ). Then, the positive fi are distributed as eigenvalues of the Jacobi ensemble with parameters m = min{p, r},
α1 = (|r − p| − 1)/2 and α2 = (N − p − 1)/2.

Proof. The matrixY = X(X \U) is the orthogonal projection of r column vectors of U on the p-dimensional column span of
X . Hence, in an appropriate basis,Y is a block matrix with one block given by a p-by-r matrix with i.i.d. standard Gaussian
entries and another block of (N −p)-by-r matrix of zeros. This proves the first part of the theorem. For the second part, note
that positive eigenvalues ofA∗A = U∗X (X∗X)−2 X∗U have the same distribution as positive eigenvalues of B−1C , where B
and C are independent Wishart matrices.

Indeed, the rank of matrices U∗X(X∗X)−2X∗U and X(X∗X)−2X∗UU∗ is min{p, r}, and their positive eigenvalues are
the same. Let W be an orthogonal N-by-p matrix formed by the eigenvectors of X(X∗X)−2X∗ and such that the matrix
W ∗X(X∗X)−2X∗W is diagonal with positive eigenvalues on the diagonal. These eigenvalues coincide with positive
eigenvalues of the inverse of aWishart matrix, (X∗X)−1, where theWishart matrix has the distributionWp(I,N). Thematrix
W ∗UU∗W is Wishart with distributionWp(I, r).

In addition, matrices W ∗X(X∗X)−2X∗W and W ∗UU∗W are independent because the eigenvalues and eigenvectors of
X(X∗X)−2X∗ are independent. Finally, since similarity transformations do not change eigenvalues, the distribution of
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