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a b s t r a c t

In this article, we consider convergence rates in functional linear regressionwith functional
responses, where the linear coefficient lies in a reproducing kernel Hilbert space (RKHS).
Without assuming that the reproducing kernel and the covariate covariance kernel are
aligned, convergence rates in prediction risk are established. The corresponding lower
bound in rates is derived by reducing to the scalar response case. Simulation studies and
two benchmark datasets are used to illustrate that the proposed approach can significantly
outperform the functional PCA approach in prediction.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The literature contains an impressive range of functional analysis tools for various problems including exploratory
functional principal component analysis, canonical correlation analysis, classification and regression. Twomajor approaches
exist. The more traditional approach, masterfully documented in the monograph [16], typically starts by representing
functional data by an expansionwith respect to a certain basis, and subsequent inferences are carried out on the coefficients.
The most commonly utilized basis includes B-spline basis for nonperiodic data and Fourier basis for periodic data. Another
line of work by the French school [10], taking a nonparametric point of view, extends the traditional nonparametric
techniques, most notably the kernel estimate, to the functional case. Some recent advances in the area of functional
regression include Cardot et al. [6], Cai and Hall [4], Preda [15], Lian [13], Ait-Saidi et al. [2], Yao et al. [18], Crambes et al. [8],
Ferraty et al. [11], Lian [14].

In this paper we study the functional linear regression problem of the form

Y (t) = µ(t) +

 1

0
β(t, s)X(s) ds + ϵ(t), (1)

where Y , X, ϵ ∈ L2[0, 1] and E[ϵ|X] = 0, the same problem that appeared in [16,18,3,1,9]. In terms of methodology, the
plan of attack we will give for (1) is most closely related to that of Crambes andMas [9]. In this introduction, we will explain
the methodology used in that paper and then the different assumptions we will make on β(t, s).

Without loss of much generality, throughout the paper we assume E(X) = 0 and the intercept µ(t) = 0, since the
intercept can be easily estimated. The covariance operator of X is the linear operatorΓ = E(X⊗X)where for x, y ∈ L2[0, 1],
x⊗ y : L2[0, 1] → L2[0, 1] is defined by (x⊗ y)(g) = ⟨y, g⟩x for any g ∈ L2[0, 1]. Γ can also be represented by the bivariate
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function Γ (s, t) = E[X(s)X(t)]. Using the same letter Γ to denote both the operator and the bivariate function will not
cause confusion in our context. We assume throughout the paper that E∥X∥

4 < ∞ which implies Γ is a compact operator.
Then by the Karhunen–Loève Theorem there exists a spectral expansion for Γ ,

Γ =

∞
j=1

λjϕj ⊗ ϕj,

where λj ≥ 0 are the eigenvalues with λj → 0 and {ϕj} are the orthonormalized eigenfunctions. Correspondingly, we have
the representation X =


j≥1 γjϕj with γj =


Xϕj. The random coefficient γj satisfies Eγjγk = λjI{j = k} where I{.} is the

indicator function.
By expanding β using the set of eigenfunctions, we write β(t, s) =


j≥1 bj(t)ϕj(s) and (1) can be equivalently written

as

Y (t) =


j≥1

bj(t)γj + ϵ(t).

Multiplying both sides above by γj and taking expectations, we obtain bj(t) = E[Y (t)γj]/λj. Given i.i.d. data (Xi, Yi), i =

1, . . . , n, {λj, ϕj} can be easily estimated by λ̂j and ϕ̂j obtained from the spectral decomposition of the empirical covariance
operator and E[Y (t)γj] can be approximated by the corresponding sample average. Thus the estimator proposed in Crambes
and Mas [9] is

β̂(t, s) =
1
n

n
i=1

k
j=1


Xiϕ̂j

λ̂j
Yi(t)ϕ̂j(s).

Note that the infinite sum over j has been truncated as some point k for regularization. One intriguing point is that there is
no regularization on Yi(t) necessary, in contrast with Yao et al. [18] where Y is observed sparsely with additional noise. This
can also be seen from that bj(t) is not a priori constrained in anyway. The reason is that only regularization of the covariance
operator, which does not depend on Y , is necessary to avoid overfitting.

Minimax convergence rates of E∥


β̂(t, s)X(s)ds −


β(t, s)X(s)ds∥2 were shown in Crambes and Mas [9]. Although no
assumption is needed on bj except that the regression operator is Hilbert–Schmidt, slowly decaying ∥bj∥ as j increases will
lead to slow convergence rate of the regression function. Given that ∥bj∥’s are the coefficients of β(t, s) in terms of the basis
ϕj, which is a characteristic of the predictor, there is no a priori reason why this basis should provide a good representation
of β in the sense that ∥bj∥ will decay fast. A more general assumption for β may be on its smoothness, which makes a
reproducing kernel Hilbert space (RKHS) approach an interesting alternative. Such arguments have led to the developments
in [19,5] for the scalar response models. While Crambes and Mas [9] is based on Cardot et al. [7] for scalar response models,
ours is based on Cai and Yuan [5].

The rest of the article is organized as follows. In Section 2, we propose an estimator for β with an RKHS approach where
the reproducing kernel and the covariance kernel are not necessarily aligned. Following Cai and Yuan [5], we say that the
two kernels are perfectly aligned if they have the same sequence of eigenvalues when ordered according to the eigenvalues.
We establish the minimax rate of convergence in prediction risk by deriving both the upper bound and the lower bound. In
Section 3,we present some simulation studies to show that the RKHS approach could significantly outperform the functional
PCA approach when the kernels are mis-aligned. This advantage is further illustrated on two benchmark datasets which
show better prediction performance using our approach. We conclude in Section 4 with some discussions. The technical
proofs are relegated to Appendix.

Finally, we list some notations and properties regarding different norms to be used. For any operator F , we use F T to
denote its adjoint operator. If F is self-adjoint and nonnegative definite, F 1/2 is its square-root satisfying F 1/2F 1/2

= F .
For f ∈ L2, ∥f ∥ denotes its L2 norm. For any operator F , ∥F ∥op is the operator norm ∥F ∥op := sup∥f ∥≤1 ∥F f ∥. The trace
norm of an operator F is Trace(F ) =


k⟨(F

TF )1/2ek, ek⟩ for any orthonormal basis {ek} of L2. F is a trace class operator
if its trace norm is finite. The Hilbert–Schmidt norm of an operator is ∥F ∥HS = (


j,k⟨F ej, ek⟩2)1/2 = (


j ∥F ej∥2)1/2.

An operator is a Hilbert–Schmidt operator if its Hilbert–Schmidt norm is finite. From the definition it is easy to see that
Trace(F TF ) = Trace(F F T) = ∥F ∥

2
HS . Furthermore, if F is a Hilbert–Schmidt operator and G is a bounded operator, then

F G is also a Hilbert–Schmidt operator with ∥F G∥HS ≤ ∥F ∥HS∥G∥op.

2. Methodology and convergence rates

Following Wahba [17], a RKHS H is a Hilbert space of real-valued functions defined on, say, the interval [0, 1], in which
the point evaluation operator Lt : H → R, Lt(f ) = f (t) is continuous. By Riesz representation theorem, this definition
implies the existence of a bivariate function K(s, t) such that

K(s, ·) ∈ H, for all s ∈ [0, 1]
and (reproducing property)
for every f ∈ H and t ∈ [0, 1], ⟨K(t, ·), f ⟩H = f (t).
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