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a b s t r a c t

This paper is motivated by a wide range of background correction problems in gene array
data analysis, where the raw gene expression intensities aremeasuredwith error. Estimat-
ing a conditional density function from the contaminated expression data is a key aspect of
statistical inference and visualization in these studies.We propose re-weighted deconvolu-
tion kernelmethods to estimate the conditional density function in an additive errormodel,
when the error distribution is known as well as when it is unknown. Theoretical properties
of the proposed estimators are investigated with respect to the mean absolute error from
a ‘‘double asymptotic’’ view. Practical rules are developed for the selection of smoothing-
parameters. Simulated examples and an application to an Illumina bead microarray study
are presented to illustrate the viability of the methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Measurement error problems have attracted a great deal of interest in the past two decades. A variety of models and
methods for the problems have been applied in scientific fields, such as medicine, economy, and astronomy. Statistical de-
convolution is an important component in measurement error models. The fundamental objective of deconvolution is to
recover the unknown probability density function of a random variable when its observed values are contaminated with
error. Let X be the variable of interest, which cannot be observed directly. Instead, we observe a sample ofW ,

Wj = Xj + Uj, for 1 ≤ j ≤ n, (1)

where Xj’s are identically distributed as X,Uj’s are identically distributed as U , and they are totally independent. The most
popular approach to estimate the density ofX is the deconvolution kernel estimator through applying an inverse Fourier trans-
form and a kernel technique [3,31,14,15]. Other estimation procedures include the truncated Fourier inversionmethod [11],
the wavelet-basedmethod [17], the penalization approach [4], among others. Deconvolution problems based onmore com-
plicated model settings have also been extensively studied. Delaigle and Meister [8], Wang et al. [32], and McIntyre and
Stefanski [26] considered the problems of heteroscedastic measurement errors. Hall and Maiti [19] investigated nonpara-
metric deconvolution methods in two-level mixed models. Neumann [28], Johannes [25] andWang and Ye [34] studied the
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density deconvolution with unknown error distribution. Delaigle and Meister [9] investigated kernel deconvolution when
the characteristic function of the measurement errors contains zeros. Wang andWang [33] discussed fast Fourier transform
algorithms in measurement error models and developed an R software package. The literature on deconvolution problems
is particularly large and is surveyed in the monograph by Meister [27].

In this paper, we consider the estimation problem of the conditional density of X given W , fX |W , from the contaminated
data Wj’s. The problem is motivated by a wide range of background correction problems in gene array data analysis. Gene
microarray techniques have become very popular in medical studies. A microarray is a collection of microscopic DNA spots
attached to a solid surface. Hundreds of thousands of gene expression values are obtained from one array chip simulta-
neously. However, reading the expression values from a microarray is a noisy measurement process. The sources of mea-
surement error include, for instance, irregularities in the array surface, variations in the laboratory process, different image
scanner settings, and dye effects.

Typically, the first step in gene array data analysis is known as background correction, which refers to adjustments to the
contaminated data intended to remove measurement error from the measured signal. Estimating the conditional density
function from contaminated gene expression data, therefore, plays a key aspect of statistical inference and visualization
here. It provides the most informative summary of the relationship between the contaminated gene intensities and the
unobserved true signals. The current popular model of background correction in bioinformatics is the normal-exponential
model [24,30]. It assumes that the observed intensity is equal to the true intensity plus the background noise, where the
true signal follows an exponential distribution with mean α, and the background noise follows a normal distribution with
mean µ and variance σ 2. However, the validity of the parametric assumptions is unknown in real gene array studies. Thus,
it is of particular interest to nonparametrically estimate the conditional density from the contaminated gene intensities.

A variety of papers discuss the nonparametric conditional density estimationwhen bivariate data are available. Hyndman
et al. [23] studied a kernel estimator. Bashtannyk andHyndman [1] and Fan and Yim [18] proposed several rules for selecting
smoothing parameters. De Gooijer and Zerom [5] proposed a modification of the Nadaraya–Watson type of smoother. Hall
et al. [20] discussed cross-validation and the estimation of conditional probability densities. Efromovich [13] studied the
conditional density estimation in a regression setting.

Unlike the conventional conditional density estimation problem from bivariate data, the observations for the variable-
of-interest, X , are not available in the measurement error problem. In this paper, we investigate the estimation of the con-
ditional density fX |W from the only-available contaminated sample Wj’s under the model (1). In Section 2, estimators of
fX |W are constructed in case of a known and an unknown error density. In Section 3, theoretical properties of the estima-
tors are investigated with respect to the mean absolute error. In Section 4, practical rules are developed for the selection
of smoothing-parameters. Simulated examples and an application to an Illumina bead microarray study are presented in
Section 5. The proofs of theorems are given in the Appendix and some additional asymptotic results are provided in the
supplement of the article (see Appendix B).

2. Methodology

Under the additive measurement error model (1), let fX , fU , and fW be the density functions of X,U , andW , respectively.
Denote fX,W (x, w) as the joint density of (X,W ). The conditional density of X givenW = w is

fX |W (x|w) = fX,W (x, w)/fW (w) = fU(w − x)fX (x)/fW (w). (2)

2.1. Estimation of fX |W with known error distribution

If one assumes that the error density fU is known explicitly, fX can be estimated by the classical deconvolution kernel
approach. It is given by,

f̂X (x) =
1
n

n
j=1

K ∗

h


x − Wj


, (3)

where K ∗

h (·) = K ∗(·/h)/h,

K ∗(z) =
1
2π


e−itz φK (t)

φU(t/h)
dt, (4)

is known as the deconvoluting kernel, and h > 0 is a smoothing parameter. In (4), φU is the characteristic function of U , and
φK (t) =


eitxK(x)dx is the Fourier transform of K(x), a symmetric probability kernel with a finite variance


x2K(x)dx < ∞.

Under the common assumption that φK is compactly supported and φU does not vanish on the real line, the deconvoluting
kernel K ∗(·) is well defined and finite.
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