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a b s t r a c t

Maximumentropymodels, motivated by applications in neuron science, are natural gener-
alizations of the β-model to weighted graphs. Similar to the β-model, each vertex in max-
imum entropy models is assigned a potential parameter, and the degree sequence is the
natural sufficient statistic. Hillar and Wibisono (2013) have proved the consistency of the
maximum likelihood estimators. In this paper, we further establish the asymptotic normal-
ity for any finite number of the maximum likelihood estimators in the maximum entropy
models with three types of edge weights, when the total number of parameters goes to
infinity. Simulation studies are provided to illustrate the asymptotic results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In neuron networks, neurons in one region of the brain may transmit a continuous signal using sequences of spikes to
a second receiver region. The coincidence detectors in the second region capture the absolute difference in spike times
between pairs of neurons projecting from the first region. There may be three possible types of timing differences: zero or
nonzero indicator; countable number of possible values; any nonnegative real value. Exploring how the transmitted signal
in the first region can be recovered by the second is a basic question in the analysis of neuron networks. Maximum entropy
models provide a possible solution to this question for the above three possible weighted edges. For detailed explanations,
see [11]; for their wide applications in the biological studies as well as other disciplines such as economics and physics,
see [11,8,1,23,25] and references therein. Maximum entropymodels (sometimes with different names) also appear in other
fields of network analysis, e.g., community detection and social network analysis. For example, see [7,2,3,16,26,18].

In the maximum entropy models, the degree sequence is the exclusively natural sufficient statistics on the exponential
family distributions and fully captures the information of an undirected graph. Its study primarily focuses on understanding
the generatingmechanisms of networks. When network edge takes dichotomous values (‘‘0’’ or ‘‘1’’), the maximum entropy
model becomes the β-model (a name given by Chatterjee, Diaconis and Sly [7]), an undirected version of the p1 model
for directed graphs by Holland and Leinhardt [12]. Rinaldo, Petrović and Fienberg [18] derived necessary and sufficient
conditions for the existence and uniqueness of the maximum likelihood estimate (MLE). As the number of parameters goes
to infinity, Chatterjee, Diaconis and Sly [7] proved that the MLE is uniformly consistent; Yan and Xu [24] further derived
its asymptotical normality. When the maximum entropy models involve the finite discrete, infinite discrete or continuous
weighted edges, Hillar andWibisono [11] have obtained the explicit conditions for the existence and uniqueness of the MLE
and proved that the MLE is uniformly consistent as the number of parameters goes to infinity.
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Statistical interests are involved with not only the consistency of estimators but also its asymptotic distributions.
The latter can be used to construct the confidence interval on parameters and performed the hypothesis testing. In the
asymptotic framework considered in this paper, the number of network vertices goes to infinity and the number of
parameter is identical to the dimension of networks (i.e., the number of vertices). Instead of studying a more complicated
situation on linear combinations of all MLEs, we describe the central limit theorems for the MLEs through the asymptotic
behavior of a finite number of the MLEs, although the total number of parameters goes to infinity. With this point, we aim
to establish the asymptotic normality of theMLEs when edges take three types of weights as in [11]. A key step in our proofs
applies a highly accurate approximate inverse of the Fisher information matrix by Yan and Xu [24].

The remainder of this article is organized as follows. In Section 2, we lay out the asymptotic distributions of the MLEs in
the maximum entropy models with the finite discrete, infinite discrete and continuous weighted edges in Sections 2.1–2.3,
respectively. Simulation studies are given in Section 3. Section 4 concludes with summary and discussion. All proofs are
relegated to Appendices.

2. Asymptotic normalities

We first give a brief description on the maximum entropy models. Consider an undirected graph G with no self-loops on
n vertices labeled by ‘‘1, . . . , n’’. Let aij be the weight of edge (i, j) taking values from the set Ω , where Ω could be a finite
discrete, infinite discrete or continuous set. Define di =


j≠i aij as the degree of vertex i, and d = (d1, . . . , dn)T is the degree

sequence of G. Let S be a σ -algebra over the set Ω of all possible values of aij, 1 ≤ i < j ≤ n. Assume there is a canonical
σ -finite probability measure ν on (Ω, S). Let ν( n

2 ) be the product measure onΩ( n
2 ). Themaximum entropymodels assume

that the density function of the symmetric adjacent matrix a = (aij)ni,j=1 with respective to ν( n
2 ) has the exponential form

with the degree sequence as natural sufficient statistics,1 i.e.,

pθ (a) = exp

−θTd − z(θ)


, (1)

where z(θ) is the normalizing constant,

z(θ) = log

S(

n
2 )

exp

−θTd


ν( n

2 )(da) = log


1≤i<j≤n


S
exp


−(θi + θj)aij


ν(daij),

and for fixed n, the parameter vector θ = (θ1, . . . , θn)
T belongs to the natural parameter space (p. 1, [5])

Θ = {θ ∈ Rn: z(θ) < ∞}.

The parameters θ1, . . . , θn can be interpreted as the strength of each vertex that determines how strongly the vertices are
connected to each other. The probability distribution (1) implies that the edges (i, j) for all 1 ≤ i < j ≤ n are mutually
independent. Since the sample is one realization of a graph, the density function in (1) is also the likelihood function. We
can see that the solution to −∇z(θ) = d is the maximum likelihood estimator (MLE) of θ .

We now consider the asymptotic distributions of the MLEs as the number of parameters goes to infinity. Let Vn =

(vij)i,j=1,...,n be the Fisher information matrix of the parameters θ1, . . . , θn. It can be written as

Vn =
∂2z(θ)

∂θ∂θT .

For three common types of weights as introduced in Section 1, Vn is the diagonal dominant matrix with nonnegative entries.
This property is crucially used in the proof of the central limit theorem on the MLE.

2.1. Finite discrete weights

When network edges take finite discrete weights, we assume Ω = {0, 1, . . . , q − 1} with q a fixed integer. In this case,
ν is the counting measure and the edge weights aij are independent multinomial random variables with the probability:

P(aij = a) =
ea(θi+θj)

q−1
k=0

ek(θi+θj)

, a = 0, 1, . . . , q − 1.

This model is a direct generalization of the β-model that only consider the dichotomous edges. The normalizing constant is

z(θ) =


1≤i<j≤n

log
q−1
a=0

e−(θi+θj)a,

1 Following Hillar and Wibisono [11], we use −θ in the parameterization (1) instead of the classical θ since it will simplify the notations in the later
presentation.
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