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a b s t r a c t

A d-dimensional nonparametric additive regression model with dependent observations
is considered. Using the marginal integration technique and wavelets methodology, we
develop a new adaptive estimator for a component of the additive regression function. Its
asymptotic properties are investigated via the minimax approach under the L2 risk over
Besov balls. We prove that it attains a sharp rate of convergence which turns to be the one
obtained in the i.i.d. case for the standard univariate regression estimation problem.
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1. Introduction

1.1. Problem statement

Let d be a positive integer, (Yi,Xi)i∈Z be a R × [0, 1]d-valued strictly stationary process on a probability space (Ω,A, P)
and ρ be a given real measurable function. The unknown regression function associated to (Yi,Xi)i∈Z and ρ is defined by

g(x) = E(ρ(Y )|X = x), x = (x1, . . . , xd) ∈ [0, 1]d.

In the additive regression model, the function g is considered to have an additive structure, i.e. there exist d unknown real
measurable functions g1, . . . , gd and an unknown real number µ such that

g(x) = µ+

d
ℓ=1

gℓ(xℓ). (1.1)

For any ℓ ∈ {1, . . . , d}, our goal is to estimate gℓ from n observations (Y1,X1), . . . , (Yn,Xn) of (Yi,Xi)i∈Z.

1.2. Overview of previous work

When (Yi,Xi)i∈Z is a i.i.d. process, this additive regression model becomes the standard one. In such a case, Stone in a
series of papers [34–36] proved that g canbe estimatedwith the same rate of estimation error as in the one-dimensional case.
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The estimation of the component gℓ has been investigated in several papers via various methods (kernel, splines, wavelets,
etc.). See, e.g., [4,21,23,29,30,1,2,33,40,32,17].

In some applications, as dynamic economic systems and financial times series, the i.i.d. assumption on the observations
is too stringent (see, e.g., [19,38]). For this reason, some authors have explored the estimation of gℓ in the dependent case.
When (Yi,Xi)i∈Z is a strongly mixing process, this problem has been addressed by [5,11], and results for continuous time
processes under a strong mixing condition have been obtained by [12,13]. In particular, they have developed non-adaptive
kernel estimators for gℓ and studied its asymptotic properties.

1.3. Contributions

To the best of our knowledge, adaptive estimation of gℓ for dependent processes has been addressed only by [18]. The
lack of results for adaptive estimation in this context motivates this work. To reach our goal, as in [40], we combine the
marginal integration technique introducedby [28]withwaveletmethods.We capitalize onwavelets to construct an adaptive
thresholding estimator and show that it attains sharp rates of convergence under mild assumptions on the smoothness of
the unknown function. By adaptive, it is meant that the parameters of the estimator do not depend on the parameter(s) of
the dependent process nor on those of the smoothness class of the function. In particular, this leads to a simple estimator.

More precisely, our wavelet estimator is based on term-by-term hard thresholding. The idea of this estimator is simple:
(i) we estimate the unknown wavelet coefficients of gℓ based on the observations; (ii) then we select the greatest ones
and ignore the others; (iii) and finally we reconstruct the function estimate from the chosen wavelet coefficients on the
considered wavelet basis. Adopting the minimax point of view under the L2 risk, we prove that our adaptive estimator
attains a sharp rate of convergence over Besov balls which capture a variety of smoothness features in a function including
spatially inhomogeneous behavior. The attained rate corresponds to the optimal one in the i.i.d. case for the univariate
regression estimation problem (up to an extra logarithmic term).

1.4. Paper organization

The rest of the paper is organized as follows. Section 2 presents our assumptions on the model. In Section 3, we describe
wavelet bases on [0, 1], Besov balls and tensor product wavelet bases on [0, 1]d. Our wavelet hard thresholding estimator is
detailed in Section 4. Its rate of convergence under the L2 risk over Besov balls is established in Section 5. A comprehensive
simulation study is reported and discussed in Section 6. The proofs are detailed in Section 7.

2. Notations and assumptions

In this work, we assume the following on our model:
Assumptions on the variables.
• For any i ∈ {1, . . . , n}, we set Xi = (X1,i, . . . , Xd,i). We suppose that

– for any i ∈ {1, . . . , n}, X1,i, . . . , Xd,i are identically distributed with the common distribution U([0, 1]),
– X1, . . . ,Xn are identically distributed with the common known density f .

• We suppose that the following identifiability condition is satisfied: for any ℓ ∈ {1, . . . , d} and i ∈ {1, . . . , n}, we have

E(gℓ(Xℓ,i)) = 0. (2.1)

Strongly mixing assumption. Throughout this work, we use the strong mixing dependence structure on (Yi,Xi)i∈Z. For any
m ∈ Z, we define themth strongly mixing coefficient of (Yi,Xi)i∈Z by

αm = sup
(A,B)∈F

(Y ,X)
−∞,0×F

(Y ,X)
m,∞

|P(A ∩ B)− P(A)P(B)| , (2.2)

where F
(Y ,X)
−∞,0 is the σ -algebra generated by . . . , (Y−1,X−1), (Y0,X0) and F

(Y ,X)
m,∞ is the σ -algebra generated by

(Ym,Xm), (Ym+1,Xm+1), . . . .
We suppose that there exist two constants γ > 0 and υ > 0 such that, for any integerm ≥ 1,

αm ≤ γ exp(−υm). (2.3)
This kind of dependence is reasonably weak. Further details on strongly mixing dependence can be found in [3,39,16,

27,6].
Boundedness assumptions.
• We suppose that ρ ∈ L1(R) ∩ L∞(R), i.e. there exist constants C1 > 0 and C2 > 0 (supposed known) such that

∞

−∞

|ρ(y)|dy ≤ C1, (2.4)

and sup
y∈R

|ρ(y)| ≤ C2. (2.5)
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