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a b s t r a c t

In a misspecified linear regression model with elliptically contoured errors, the exact
biases and risks of least squares, restricted least squares, preliminary test and Stein-type
estimators of the error variance are derived. Also, we compare the risk performances of
the underlying estimators and give the dominance pictures for them. It is shown that the
risk of preliminary test estimator attains the smallest value if the critical value equals one.
Moreover, we give a bootstrap procedure for estimating the risks of proposed estimators
in order to overcome the difficulty of computing the exact risks when the sample size
becomes larger.
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1. Introduction

Consider the linear regression model:

y = X1β1 + X2β2 + ε, (1.1)

where y is an n × 1 observable random vector, β1 ∈ Rk1 and β2 ∈ Rk2 are unknown parameters, X1 and X2 are n × k1 and
n × k2 full column rank matrices respectively, ε is an error term with the elliptically contoured distributions En(0, σ 2V , ψ)
forσ ∈ R+ and un-structured knownmatrixV ∈ S(n). Here S(n)denotes the set of all positive definitematrix of order (n×n)
with the following characteristic function φε(τ ) = ψ(σ 2τ ′Vτ), for some functions ψ : [0,∞] −→ R say characteristic
generator (Fang et al. [11]). If ε possess a density, then it can be represented as a scalemixture between a normal distribution
with scale parameter t2 and a weight function ω(t) by (Chu [8])

fε(u) = dn|σ 2V |
−

1
2 gn


1

2σ 2
u′V−1u


=


∞

0
pN(u|t)ω(t)dt, (1.2)

where dn is a normalizing constant, gn(·) is a function called density generator, and pN(u|t) is the probability density function
(pdf) of Nn(0, σ 2t−1V ). Then we will write ε ∼ En(0, σ 2V , gn). The condition


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0 x
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2 −1gn(x)dx < ∞ guarantees that gn(x)
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is a density generator. Also gn and ψ determine each other for each specific member of this family. The mean of ε is the
zero-vector and the covariance-matrix of ε is

Cov(ε) = −2σ 2ψ ′(0)V = σ 2
ε V , where σ 2

ε = −2σ 2ψ ′(0).

The class of ECDs contains some important distributions, such as multivariate normal, multivariate student’s t , multivariate
Pearson Type VII and so on. For more examples, see Arashi et al. [3]. The elliptically contoured distribution has also some
particular mathematical properties and is widely used in statistical inference. For more details, the readers are referred
to Cambanis et al. [7], Muirhead [18], Fang et al. [12] and Gupta and Varga [15]. Moreover, ECDs can be regarded as a
proper alternative for multivariate normal distribution satisfying robustness and stableness in improved estimation. Such
related results have been obtained in different statistical model with elliptically contoured errors. For example, Arashi et al.
[3,5] discussed the estimation of parameters in parallelismmodel and regressionmodel, respectively. Under a balanced loss
function, Arashi [1,2] analyzed the problemof estimation inmultiple regressionmodel and a seemingly unrelated regression
system, respectively.

However,most econometric relationships are subject to specification errors arising from the following three problems: (i)
The true functional forms of economic relationships are usually unknown. (ii) Econometric models cannot be specified with
omitting some relevant explanatory variables. (iii) Data on economic variables contain measurement errors. Consequently,
misspecification of models is difficult to avoid. Our analytical framework is a linear regression model, which is misspecified
due to the exclusion of relevant explanatory variable. Such a framework has both theoretical and practical appeals.
Technically, the misspecified model allows the inclusion of the correctly specified model as a special case and is thus a
more general framework than the latter model. Practically, it is often the case that the deterministic part of the regression
cannot be fully specified by the investigator due to the lack of data, ignorance or simplification in the real world. So it
makes sense to investigate the properties of parametric estimators in a misspecified regression. In the literature, some
conclusions with a normal misspecified linear model have been obtained. For example, for the regression coefficients,
Mittelhammer [17] compared the predictive squared error risk behavior of a restricted least squares estimator, preliminary
test estimator, and Stein rule estimator. Ohtani [20] examined the dominance of the preliminary test Stein-rule estimator
using the Stein-variance estimator over the traditional Stein-rule estimator. Namba [19] obtained the predictive mean
squared errors performances of the biased estimators. For the error variance, Ohtani [21] gave the exact distribution of
a preliminary test estimator and analyzed theoretically the MSE dominance of the Stein variance estimator over the usual
estimator. Ohtani and Wan [23] gave the comparison of the Stein and the usual estimators under the Pitman nearness
criterion. However, No systematicwork has been done about the estimation of parameters in amisspecified linear regression
model with elliptically contoured distribution. In this paper, we concentrate our attention on investigating the properties
of error variance estimators.

Now, suppose that the regressor X2 in the model (1.1) is omitted mistakenly and the model is specified as

y = X1β1 + η, η = X2β2 + ε. (1.3)

Such related results have been done about the estimation of error variance in many different linear models. For example,
Clarke et al. [9] discussed the preliminary test estimation in a linear regressionmodelwithmultivariate normal disturbances.
Saleh [16] gave the theory of preliminary test and Stein-type estimators and its applications in several kinds of linear model
with multivariate normal errors. Giles [14] analyzed the risk performance of preliminary test estimators in a misspecified
linear model with spherically symmetric disturbances. Arashi and Tabatabaey [6] gave the improved variance estimation
under sub-space restriction and multivariate t errors. Arashi et al. [4] obtained the mathematical characteristics of three
improved estimators of variance components in elliptically contoured models. Now, we will propose the least squares
estimator, restricted least squares estimator, preliminary test estimator, Stein-type estimator of σ 2

ε in the misspecified
linear model with elliptically contoured errors and give the risk comparison of these estimators by theoretical analysis
and numerical evaluations.

The rest of this paper is organized as follows. In Section 2,we give four estimators ofσ 2
ε andobtain the explicit formulas for

the risks of proposed estimators. In Section 3, we analyze the risk performances of four estimators in theory, respectively.
Meanwhile, we give the dominance picture of risk by numerical evaluation when the error term obeys a multivariate t
distribution. In Section 4, we give a bootstrap procedure to estimate the risks of proposed estimators. Concluding remarks
are placed in Section 5.

2. Estimators and its risks

In the model (1.3), the generalized least squares estimator of β1 is

β̃1 = (X ′

1V
−1X1)

−1X ′

1V
−1y = C−1

11 X ′

1V
−1y, C11 = X ′

1V
−1X1.

Similarly, the least squares estimator (LSE) of σ 2
ε is

S2 =
(y − X1β̃1)

′V−1(y − X1β̃1)

m
, m = n − k1.
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