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a b s t r a c t

This paper is concernedwith the inference of nonparametricmean function in a time series
context. The commonly used kernel smoothing estimate is asymptotically normal and the
traditional inference procedure then consistently estimates the asymptotic variance func-
tion and relies upon normal approximation. Consistent estimation of the asymptotic vari-
ance function involves another level of nonparametric smoothing. In practice, the choice
of the extra bandwidth parameter can be difficult, the inference results can be sensitive to
bandwidth selection and the normal approximation can be quite unsatisfactory in small
samples leading to poor coverage. To alleviate the problem, we propose to extend the re-
cently developed self-normalized approach,which is a bandwidth free inference procedure
developed for parametric inference, to construct point-wise confidence interval for non-
parametric mean function. To justify asymptotic validity of the self-normalized approach,
we establish a functional central limit theorem for recursive nonparametric mean regres-
sion function estimates under primitive conditions and show that the limiting process is a
Gaussian process with non-stationary and dependent increments. The superior finite sam-
ple performance of the new approach is demonstrated through simulation studies.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Nonparametric methods are useful complements to the traditional well developed parametric counterparts. They allow
the users to entertainmodel flexibility while reducingmodeling bias, and partly due to this reason, nonparametric inference
has been extensively studied. This paper concerns a new way of addressing nonparametric inference in the time series
setting. There is a huge literature about the use of nonparametric methods in time series analysis, and asymptotic theory
for nonparametric estimators and tests has been quite well developed for weakly dependent time series data. We refer the
reader to Chapters 5–10 in [3] for a nice introduction of some basic ideas and results.

Given stationary time series {(Xi, Yi)}
n
i=1, we focus on inference for the conditional mean function µ(x) = E(Yi|Xi = x);

see Section 4 for some possible extensions to other nonparametric functions. Let µ̂n(x) be a nonparametric estimate of µ(x)
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based on the full sample. Under suitable regularity and weak dependence conditions, we have
nbn

µ̂n(x) − µ(x) − b2nr(x)
s(x)

d
−→ N(0, 1), (1)

where bn is an appropriate bandwidth, b2nr(x) is the bias term, s2(x) is the asymptotic variance function, and
d

−→ stands
for convergence in distribution. To construct a point-wise confidence interval for µ(x), the traditional approach involves
consistent estimation of s2(x) through an extra nonparametric smoothing procedurewhich inevitably introduces estimation
error. The latter issue becomes even more serious when s(x) ≈ 0 so that the left hand side of (1) is very sensitive to the
estimation error of s(x). In particular, even if the absolute estimation error is small, the relative estimation error can be
large, which leads to poor coverage in the constructed confidence interval. Thus, one needs to deal with the unpleasant
phenomenon that, the smaller s(x) (i.e. lower noise level), the more difficult to carry out statistical inference. Furthermore,
nonparametric estimation of s(x) involves extra bandwidth parameter(s). Two users using two different bandwidths in
estimating s(x) for the same data set may get quite different results.

To alleviate the above-mentioned problem in the traditional inference procedure, we propose to extend the recently
developed self-normalized (SN, hereafter) approach [14] to nonparametric setting. The SN approach was developed for a
finite dimensional parameter of a stationary time series and it has the nice feature of being bandwidth free. The basic idea of
the SN approach, when applied to nonparametric setting, is to use estimates of µ(x) on the basis of recursive subsamples to
forma self-normalizer that is an inconsistent estimator of s(x). Although it is inconsistent, the self-normalizer is proportional
to s(x), and the limiting distribution of the self-normalized quantity is pivotal. The literature on the SN approach and
related methods [10,12,8,7,14,15,17,21] has been growing recently, but most of the work is limited to parametric inference,
where the parameter of interest is finite dimensional and the method of estimation does not involve smoothing. Kim and
Zhao [9] studied SN approach for the nonparametric mean function in longitudinal models, but the data are essentially
independent due to the independent subjects. To the best of our knowledge, the SN-based extension to nonparametric time
series inference seems new.

An important theoretical contribution of this article is that we establish nonparametric functional central limit theorem
(FCLT, hereafter) of some recursive estimates of µ(·) under primitive conditions. To be specific, denote by µ̂m(x) the
nonparametric estimate of µ(x) using data {(Xi, Yi)}

m
i=1 up to time m and bandwidth bm. Throughout, denote by ⌊v⌋ the

integer part of v. We show that, due to the sample-size-dependent bandwidths, the process {µ̂⌊nt⌋(x) − µ(x)} indexed by
t , after proper normalization, converges weakly to a Gaussian process {Gt} with non-stationary and dependent increments.
Such a result is very different from the FCLT required for the SN approach in the parametric inference problems, where the
limiting process is a Brownian motion with stationary and independent increments.

Throughout, we write ξ ∈ Lp (p ≥ 1) if ∥ξ∥p := (E|ξ |
p)1/p < ∞. The symbols Op(1) and op(1) signify being bounded in

probability and convergence to zero in probability, respectively. For sequences {an} and {cn}, write an ≍ cn if an/cn → 1. The
article is organized as follows. Section 2 presents themain results, including the FCLT for nonparametric recursive estimates
and the self-normalization based confidence interval. Simulation results are presented in Section 3. Section 4 concludes and
technical details are gathered in the Appendix.

2. Main results

We consider the nonparametric mean regression model:

Yi = µ(Xi) + ei, (2)

where µ(·) is the nonparametric mean function of interest and {ei} are noises. As an important special case, let Xi = Yi−1
and ei = σ(Xi)εi for innovations {εi} and a scale function σ(·), then we have the nonparametric autoregressive (AR) model
Yi = µ(Yi−1) + σ(Yi−1)εi, which includes many nonlinear time series models, such as linear AR, threshold AR, exponential
AR, and AR with conditional heteroscedasticity; see [3]. We assume that {(Xi, Yi)}

n
i=1 are stationary time series observations

so that they have a natural ordering in time, i.e., (Xi, Yi) is the observation at time i.

2.1. Nonparametric FCLT for recursive estimates

Throughout let x be a fixed interior point in the support of Xi. Denote by µ̂m(x) the nonparametric estimate ofµ(x) based
on data {(Xi, Yi)}

m
i=1 up to time m. In this paper we consider the local linear kernel smoothing estimator [2] of µ(x):

µ̂m(x) = â0, (â0, â1) = argmin
(a0,a1)

m
i=1


Yi − a0 − a1(Xi − x)

2
K
Xi − x

bm


, (3)

where K(·) is a kernel function and bm > 0 is the bandwidth. By elementary calculation,

µ̂m(x) =
Mm(2)Nm(0) − Mm(1)Nm(1)

Mm(2)Mm(0) − Mm(1)2
, (4)
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