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a b s t r a c t

Canonical correlation analysis (CCA) is a dimension-reduction technique in which two
random vectors from high dimensional spaces are reduced to a new pair of low
dimensional vectors after applying linear transformations to each of them, retaining as
much information as possible. The components of the transformed vectors are called
canonical variables. One seeks linear combinations of the original vectors maximizing the
correlation subject to the constraint that they are to be uncorrelated with the previous
canonical variables within each vector. By these means one actually gets two transformed
random vectors of lower dimension whose expected square distance has been minimized
subject to have uncorrelated components of unit variance within each vector. Since the
closeness between the two transformed vectors is evaluated through a highly sensitive
measure to outlying observations as the mean square loss, the linear transformations we
are seeking are also affected. In this paper we use a robust univariate dispersion measure
(like an M-scale) based on the distance of the transformed vectors to derive robust S-
estimators for canonical vectors and correlations. An iterative algorithm is performed
by exploiting the existence of efficient algorithms for S-estimation in the context of
Principal Component Analysis. Some convergence properties are analyzed for the iterative
algorithm. A simulation study is conducted to compare the newprocedurewith some other
robust competitors available in the literature, showing a remarkable performance. We also
prove that the proposal is Fisher consistent.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Principal component analysis (PCA) and canonical correlation analysis (CCA) are two dimension-reduction techniques
of widespread use in statistics. Though the principal component analysis relates to an internal analysis, i.e. within-group
spectral decomposition for the study of dispersion, and the canonical correlations to an external analysis, i.e. between-
group interrelations or correlations, conceptually they are interrelated. We will further explore this relationship. For a
random vector x in the Euclidean space of dimension q, with positive definite dispersion matrix Σ , PCA looks for the
spectral decomposition ofΣ , the eigenvectors v1, . . . , vq associatedwith the corresponding eigenvalues in decreasing order
δ1 ≥ δ2 ≥ · · · ≥ δq > 0, that is,

Σ =

q
i=1

δivivti . (1)
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The variables vt1(x − Ex), . . . , vtq(x − Ex) are usually referred as principal components. The spectral decomposition gives
the orthonormal directions of maximum dispersion for x, where the eigenvalues and eigenvectors can be defined through
an optimization scheme,

δ1 = max
a∈Rq, ∥a∥=1

Var(at(x − Ex)), v1 = arg max
a∈Rq, ∥a∥=1

Var(at(x − Ex)) (2)

δj = max
∥a∥=1, Cov(at (x−Ex),vtk(x−Ex))=0, k=1,...,j−1

Var(at(x − Ex)), j > 1

vj = arg max
∥a∥=1, Cov(at (x−Ex),vtk(x−Ex))=0, k=1,...,j−1

Var(at(x − Ex)),

where Var and Cov stand for the variance and the covariance operators for randomvariables. On the other hand, the principal
components are the best linear predictors for z = x − Ex when looking for linear combinations

p
k=1(a

t
kz)ak based on an

orthonormal set

a1, . . . , ap, ap+1, . . . , aq


, p < q. More precisely, principal components solve the optimization problem

(µx, Vp) = arg min
µ∈Rp,V

E ∥(x − µ)− PV (x − µ)∥2

= arg min
µ∈Rp,V

E
PV⊥ (x − µ)

2 , (3)

where PV stands for the orthogonal projection on a subspace V of dimension p < q, V =

a1, . . . , ap


means that V is gen-

erated by the orthonormal set

a1, . . . , ap


and V⊥

=

ap+1, . . . , aq


denotes the orthogonal complement of V . Then, the

solutions (µx, Vp) for (3) are given by

µx = Ex, Vp =

v1, . . . , vp


and PVp(z) =

p
k=1

(vtkz)vk.

CCAwas proposed byHotelling [10] to determine the relationship between two sets of variables obtained by transforming
the vectors x and y into two vectors z andw in lower dimensions whose association has been greatly strengthened (see Das
and Sen [5] for a very thorough account on CCA and their wide variety of applications). In recent years, CCA has also gained
popularity as a method for the analysis of genomic data, since CCA has the potential to be a powerful tool for identifying
relationships between genotype and gene expression. It has also been used in geostatistical applications (see Furrer and
Genton [8]). CCA is closely related to multivariate regression when the vectors x and y are not treated symmetrically (see
Yohai and García Ben [20]). Given the two random vectors x and y of dimensions p and q respectively, with dispersionmatrix
given by

Σ =


E(x − Ex)(x − Ex)t E(x − Ex)(y − Ey)t
E(y − Ey)(x − Ex)t E(y − Ey)(y − Ey)t


=


Σxx Σxy
Σyx Σyy


, (4)

det(Σxx) > 0 < det(Σyy), 0 < r = rank(Σxy) ≤ min(p, q) = s. (5)

CCA seeks linear combinations of the variables in x and the variables in y that are maximally correlated with each other,
that is, the first canonical vectors α1 and β1 are defined (except for the signs) as

α1,β1


= argmax
(a,b)∈(Rp−{0})×(Rq−{0})

Corr

atx, bty


. (6)

Since the correlationmeasure is scale invariant, we can define the first canonical vectors α1,β1 as solutions to the optimiza-
tion problem,

α1,β1


= argmax
(a,b)∈A1

Corr

atx, bty


, (7)

with

A1 =

(a, b) ∈ Rp

× Rq
: Var


atx


= atΣxxa = 1,Var

bty


= btΣyyb = 1

. (8)

The variables αt
1(x − Ex) and βt

1(y − Ey) are called the first canonical variables and its positive correlation ρ1 = Corr(αt
1x,

βt
1y) is called the first canonical correlation. Canonical vectors and variables of higher order are defined recursively. Given

k > 1, let us take the first k − 1 canonical variables αt
1(x − Ex), . . . ,αt

k−1(x − Ex) and βt
1(y − Ey), . . . ,βt

k−1(y − Ey)
based on canonical vectors {α1, . . . ,αk−1} ⊂ Rp and


β1, . . . ,βk−1


⊂ Rq. Then, the kth canonical variables αt

k(x − Ex)
and βt

k(y − Ey) can be obtained by seeking the vectors αk ∈ Rp and βk ∈ Rq so that the linear combinations αt
kx and βt

ky
with unit variance, uncorrelated toαt

1x, . . . ,α
t
k−1x andβt

1y, . . . ,β
t
k−1y, maximize the correlation coefficient between them.

More precisely, we look for vectors defined as
αk,βk


= argmax

(a,b)∈Ak

Corr

atx, bty


, (9)
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