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• Incompleteness of the previous proofs for the convergence of MS algorithm is reviewed.
• I showed the gradient function is always nonzero outside the convex hull of the data.
• The convergence of the MS algorithm with isolated stationary points is proved.
• A sufficient condition for Gaussian KDE to have isolated stationary points is given.
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a b s t r a c t

The mean shift (MS) algorithm is a non-parametric, iterative technique that has been used
to findmodes of an estimatedprobability density function (pdf). Although theMSalgorithm
has been widely used in many applications, such as clustering, image segmentation, and
object tracking, a rigorous proof for its convergence is still missing. This paper tries to fill
some of the gaps between theory and practice by presenting specific theoretical results
about the convergence of the MS algorithm. To achieve this goal, first we show that all the
stationary points of an estimated pdf using a certain class of kernel functions are inside
the convex hull of the data set. Then the convergence of the sequence generated by the
MS algorithm for an estimated pdf with isolated stationary points will be proved. Finally,
we present a sufficient condition for the estimated pdf using the Gaussian kernel to have
isolated stationary points.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The modes of a probability density function (pdf) play an essential role in many applications, including classification [6],
clustering [24],multi-valued regression [16], image segmentation [12], and object tracking [13]. Due to the lack of knowledge
about the pdf, a nonparametric technique is proposed to find an estimate for the gradient of a pdf [18]. The gradient of a pdf
at a continuity point is estimated using the sample observations that fall in the vicinity of that point. By equating the gradient
estimate to zero, we can find an equation for the modes of a pdf. The mean shift (MS) algorithm is a simple, non-parametric,
and iterative method introduced by Fukunaga and Hostetler [18] for finding modes of an estimated pdf. The algorithm was
generalized by Cheng [11] in order to show that the MS algorithm is a mode-seeking process on a surface constructed with
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a shadow kernel. Later, the algorithm became popular in the machine learning society when its potential usage for feature
space analysis was studied [12].

The MS algorithm shifts each data point to the weighted average of the data set in each iteration. It starts from one of
the data points and iteratively improves the mode estimate. The algorithm can be used as a clustering tool, where each
mode represents a cluster. In contrast to the k-mean clustering approach, the mean shift algorithm does not require any
prior knowledge of the number of clusters and there is no assumption of the shape of the clusters. The algorithm has been
successfully used for applications such as image segmentation [33,36], edge detection [37,19], object tracking [13,35], in-
formation fusion [10], and noisy source vector quantization [3,4].

In spite of using the MS algorithm in different applications, a rigorous proof for the convergence of the algorithm is still
missing in the literature. The authors in [12] claimed that the MS algorithm generates a convergent sequence. But a crucial
step for the convergence proof of the sequence in [12] is not correct. In another work, it was shown that the MS algorithm
with the Gaussian kernel is an instance of the expectation maximization (EM) algorithm and hence the generated sequence
converges to a mode of the estimated pdf [8]. However, without additional conditions, the EM algorithmmay not converge.

In this paper, we first show that the gradient of the estimated pdf cannot be zero outside the convex hull of the data set.
The previous statement implies that all the stationary points of the estimated pdf must be inside the convex hull. Then, we
consider theMS algorithm in D-dimensional space (D ≥ 1) and prove that if the estimated pdf has isolated stationary points
then the MS algorithm converges to a mode inside the convex hull of the data set. Furthermore, we provide a sufficient
condition for the pdf estimate using the Gaussian kernel to have isolated stationary points.

The organization of the paper is as follows. In Section 2, a brief review of theMS algorithm is given. The incompleteness of
the previously given proofs for the convergence of the MS algorithm is discussed in Section 3. The convergence proof of the
MS algorithm with the isolated stationary points is given in Section 4. Furthermore, a sufficient condition to have isolated
stationary points for an estimated pdf using the Gaussian kernel is given in Section 4. The concluding remarks are given in
Section 5.

2. Mean shift algorithm

A D-variate kernel K : RD
→ R is a non-negative real-valued function that satisfies the following conditions [32]

RD
K(x)dx = 1, lim

∥x∥→∞

∥x∥DK(x) = 0,


RD
xK(x)dx = 0,


RD

xxTK(x)dx = cK I,

where cK is a constant and I is the identity matrix. Let xi ∈ RD, i = 1, . . . , n be a sequence of n independent and identically
distributed (i.i.d.) random variables. The kernel density estimate f̂ at an arbitrary point x using a kernel K(x) is given by

f̂ (x) =
1
n

n
i=1

KH(x − xi), (1)

where KH(x) = |H|
−1/2K(H−1/2x), H is a symmetric positive definite D × D matrix called the bandwidth matrix, and |H|

denotes the determinant of H. A special class of kernels, called radially symmetric kernels, has been widely used for pdf
estimation. Radially symmetric kernels are defined by K(x) = ck,Dk(∥x∥2), where ck,D is a normalization factor that causes
K(x) to integrate to one and k : [0, ∞) → [0, ∞) is called the profile of the kernel. The profile of a kernel is assumed to be
a non-negative, non-increasing, and piecewise continuous function that satisfies


∞

0 k(x)dx < ∞. Two widely used kernel
functions are the Epanechnikov kernel and the Gaussian kernel, both of which are defined by [30],

1. Epanechnikov kernel

KE(x) =


1
2
c−1
D (D + 2)(1 − ∥x∥2) if ∥x∥ ≤ 1

0 if ∥x∥ > 1,

where cD is the volume of the unit D-dimensional sphere.
2. Gaussian kernel

KN(x) = (2π)−D/2 exp

−

∥x∥2

2


.

The probability density estimation that results from this technique is asymptotically unbiased and consistent in the mean
square sense [28]. For the sake of simplicity, the bandwidth matrixH is chosen to be proportional to the identity matrix, i.e.,
H = h2I . Then, by using the profile k and the bandwidth h, the estimated pdf changes to the followingwell-known form [30]

f̂h,k(x) =
ck,D
nhD

n
i=1

k

x − xi
h

2


. (2)
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