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h i g h l i g h t s

• We propose a new procedure for sparse precision matrix estimation.
• We are among the first to establish the theory of cross validation for this problem.
• The conditions are slightly weaker than an important penalized likelihood method.
• Improved numerical performance is observed in several examples.
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a b s t r a c t

This paper proposes a new method for estimating sparse precision matrices in the high
dimensional setting. It has been popular to study fast computation and adaptive procedures
for this problem. We propose a novel approach, called Sparse Column-wise Inverse
Operator, to address these two issues. We analyze an adaptive procedure based on cross
validation, and establish its convergence rate under the Frobenius norm. The convergence
rates under othermatrix norms are also established. Thismethod also enjoys the advantage
of fast computation for large-scale problems, via a coordinate descent algorithm.Numerical
merits are illustrated using both simulated and real datasets. In particular, it performs
favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Estimating covariance matrices is fundamental in multivariate analysis. It has been popular to estimate the inverse co-
variance (or precision) matrix in the high dimensional setting, where the number of variables p goes to infinity with the
sample size n (more precisely, in this paper, p ≫ n and (log p)/n = o(1)). Inverting the sample covariance matrix has
been known to be unstable for estimating the precision matrix. Recent proposals usually formulate this objective as reg-
ularized/penalized optimization problems, where regularization is employed to control the sparsity of the precision ma-
trix. Besides the challenge of solving such large optimization problems, there is an important issue on how to choose an
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appropriate regularization level that is adaptive to the data. To address these two challenges, we propose a fast and adap-
tive method, and establish the theoretical properties when the regularization level is chosen by cross validation.

Let X = (X1, . . . , Xp)
T be a p-variate random vector with a covariance matrix 6 or its corresponding precision matrix

� := 6−1. Suppose we observe independent and identically distributed random samples {X1, . . . ,Xn} from the distribution
of X . To encourage a sparse and stable estimate for �, regularized/penalized likelihood approaches have been proposed.
Here, sparsity means that most of the entries in � are exactly zero. Popular penalties include the ℓ1 penalty [22] and its
extensions, for example, [24,12,8,20]. In particular, [12] developed an efficient algorithm, glasso, to compute the penalized
likelihood estimator, and its convergence rates were obtained under the Frobenius norm [20] and the elementwise ℓ∞ norm
and spectral norm [19]. Other penaltieswere also studied before. For example, the ℓ1 penaltywas replaced by the nonconvex
SCAD penalty [11,14,10]. Due to the complexity of the penalized likelihood objective, theoretical analysis and computation
are rather involved. Moreover, the theory usually relies on some theoretical assumptions of the penalty, and thus it provides
limited guidance for applications.

Recently, column-wise or neighborhood based procedures have caught much attention, due to the advantages in both
computation and analysis. [18] proposed to recover the support of � using ℓ1 penalized regression, aka LASSO [22],
in a row by row fashion. This can be computed efficiently via path-following coordinate descent [13] for example. A
Dantzig selector proposal, replacing the LASSO approach, was proposed recently by [23], and the computation is based
on standard solvers for linear programming. [5] proposed a procedure, CLIME, which seeks a sparse precision matrix under
a matrix inversion constraint. Their procedure is also solved column by column via linear programming. Compared with the
regularized likelihood approaches, their convergence rates were obtained under several matrix norms mentioned before,
without imposing themutual incoherence condition [19], and were improved when X follows polynomial tail distributions.
However, all these procedures can be computational expensive for very large p, and again these estimators were analyzed
based on theoretical choices of the penalty.

Cross validation on the other hand has gained popularity for choosing the penalty levels or tuning parameters, because
it is adaptive and usually yields superior performance in practice. Unfortunately, the theoretical understanding of cross
validation is sparse. For a related problem on estimating sparse covariance matrices, [1] analyzed the performance of
covariance thresholding where the threshold is based on cross validation. [4] provided a different approach using self-
adaptive thresholding. However, these covariance estimation results cannot be extended to the inverse covariance setting,
partly due to the problem complexity. This paper will provide theoretical justification for cross validation when estimating
the precisionmatrix. This result is made possible becausewe propose a new column-wise procedure that is easy to compute
and analyze. To the best of our knowledge, this paper is among the first to provide theoretical justification of cross validation
for sparse precision matrix estimation.

The contributions of this paper are several folds. First, we propose a novel and penalized column-wise procedure, called
Sparse Columnwise Inverse Operator (SCIO), for estimating the precision matrix �. Second, we establish the theoretical
justification under mild conditions when its penalty is chosen by cross validation. The theory for cross validation is
summarized as follows. A matrix is called sp-sparse if there are at most sp non-zero elements on each row. It is shown

that the error between our cross validated estimator �̂ and � satisfies ∥�̂
1

− �∥
2
F/p = OP(sp(log p)/n), where ∥ · ∥F is

the Frobenius norm. Third, theoretical guarantees for the SCIO estimator are also obtained under other matrix norms, for
example the element-wise ℓ∞ norm which achieves graphical model selection [15]. Fourth, we provide a fast and simple
algorithm for computing the estimator. Because our algorithm exploits the advantages of conjugate gradient and coordinate
descent, and thus it provides superior performance in computational speed and cost. In particular, we reduce two nested
loops in glasso [12] to only one. An R package of our method, scio, has been developed, and is publicly available on CRAN.

The rest of the paper is organized as follows. In Section 2, after basic notations and definitions are introduced, we present
the SCIO estimator. Finite sample convergence rates are establishedwith the penalty level chosen both by theory in Section 3
and by cross validation in Section 4. The algorithm for solving SCIO is introduced in Section 5. Its numerical merits are
illustrated using simulated and real datasets. Further discussions on the connections and differences of our resultswith other
related work are given in Section 6. The supplementary material includes additional results for the numerical examples in
Section 5 and the proof of the main results (see Appendix A).

The notations in this paper are collected here. Throughout, for a vector a = (a1, . . . , ap)T ∈ Rp, define |a|1 =
p

j=1 |aj|

and |a|2 =

p
j=1 a

2
j . All vectors are column vectors. For a matrix A = (aij) ∈ Rp×q, we define the elementwise l∞ norm

|A|∞ = max1≤i≤p,1≤j≤q |aij|, the spectral norm ∥A∥2 = sup|x|2≤1 |Ax|2, the matrix ℓ1 norm ∥A∥L1 = max1≤j≤q
p

i=1 |aij|,

the matrix ∞ norm ∥A∥∞ = max1≤i≤q
p

j=1 |aij|, the Frobenius norm ∥A∥F =


i,j a

2
ij, and the elementwise ℓ1 norm

∥A∥1 =
p

i=1
q

j=1 |aij|. Ai,· and A·,j denote the ith row and jth column respectively. I denotes an identity matrix. 1 {·} is the
indicator function. The transpose of A is denoted by AT . For any two matrices A and B of proper sizes, ⟨A, B⟩ =


i


ATB


ii.

For any two index sets T and T ′ and a matrix A, we use ATT ′ to denote the |T | × |T ′
| matrix with rows and columns of A

indexed by T and T ′ respectively. The notation A ≻ 0 means that A is positive definite. For two real sequences {an} and {bn},
write an = O(bn) if there exists a constant C such that |an| ≤ C |bn| holds for large n, an = o(bn) if limn→∞ an/bn = 0, and
an ≍ bn if an = O(bn) and bn = O(an). Write an = OP(bn) if an = O(bn) holds with the probability going to 1. The constants
C, C0, C1, . . . may represent different values at each appearance.
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