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a b s t r a c t

In random effect models, error variance (stage 1 variance) and scalar random effect vari-
ance components (stage 2 variances) are a priori modeled independently. Considering the
intrinsic link between the stages 1 and 2 variance components and their interactive effect
on the parameter draws in Gibbs sampling, we propose modeling the variances of the two
stages a priori jointly in amultivariate fashion.We use random effects linear growthmodel
for illustration and consider multivariate distributions to model the variance components
jointly including the recently developed generalized multivariate log gamma (G-MVLG)
distribution. We discuss these variance priors as well as the independent variance priors
exercised in the literature in different aspects including noninformativeness and propriety
of the associated posterior density. We show through an extensive simulation experiment
that modeling the variance components of different stages multivariately results in bet-
ter estimation properties for the response and random effect model parameters compared
to independent modeling. We scrutinize the sensitivity of response model coefficient esti-
mates to the parameters of considered noninformative variance priors and find that their
full conditional expectations are insensitive to noninformative G-MVLG prior parameters.
We apply independent and joint models for analysis of a real dataset and find that mul-
tivariate priors for variance components lead to better fitted hierarchical model than the
univariate variance priors.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Hierarchical models are extensively used tomodel response data obtained from repeatedmeasures designs, longitudinal
studies, and multi-level randomized experiments designed in latin square, split plot, balanced/imbalanced block with ran-
dom effects. Random effects models are currently very popular in a wide variety of fields such as medicine, pharmacology,
psychology, regional sciences, agriculture, sports, modeling of traffic accidents, and energy economy [23,14,16,24,17,5,1,8,
18,9].

In a hierarchical model, regression coefficients or treatment effects are viewed as random variables. The top stage
(stage 1) of a hierarchical model consists of the response model whereas the next stage (stage 2) consists of models for the
random coefficients (random effects). For responses obtained from a repeated measures design or a longitudinal study, the
randomcoefficients of a linear hierarchicalmodel account for the heterogeneity among the subjects aswell as the correlation
among the observations collected from the same subject at different time points. For data obtained from a randomized
experiment in which the groups are viewed as a random selection from a population of groups, random effects encapture
group specific effects as well as between group variation. For Bayesian analysis of hierarchical models, the hierarchical
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structure is enlarged to include yet another stage at which the variances of the random coefficients (random effects) are
given prior distributions. This stage is the focus of the current article.

As there is usually and unsurprisingly no sufficient prior knowledge regarding what could be the variance of the random
coefficient, the user prefers noninformative hyperpriors and let the likelihood dominate the inference on the stage 2 vari-
ances. Therefore of interest are the diffuse priors and researchers in the area have been in quest for what could be regarded
as default hyperprior for the stage 2 variance parameters or a one to one transformation of them. Of all the diffuse priors
considered in the literature, gamma distribution with small shape and scale parameters (denoted thereof by Ga(ϵ, ϵ)) has
been the most commonly used default prior for the inverse of stage 2 variance parameter (an equivalent representation
being Inv− Ga(ϵ, ϵ) for stage 2 variance) owing its common use to its conjugacy to Normality and resulting computational
benefits in softwares such as BUGS that perform Gibbs sampling for posterior inference. A dangerous but often overlooked
characterization of diffuse hyperprior distributions based on gamma distribution is that it may result in near or complete
improper posteriors. For instance, Natarajan and McCulloch [21] discuss diffuse inverted gamma priors in probit-Normal
hierarchical models resulting in improper posterior distributions and inaccurate posterior estimates. Motivated for devel-
oping proper hyperprior, Natarajan and Kass [20] proposed for generalized linear mixed models an approximate uniform
shrinkage and Jeffreys priors for the unstructured second stage variance matrix and showed that their priors lead to proper
posteriors and have better frequentist properties relative to inverse-gamma and Wishart hyperpriors.

More recently Lambert et al. [15] compare effects of 13 different prior settings induced on stage 2 scale parameters of
a random effects hierarchical model via a simulation study using WinBUGS. They consider various gamma, Pareto and lo-
gistic distributions as prior for stage 2 precision, various uniform distributions as prior for stage 2 variance, its square root
and natural logarithm, and various half-normal distributions as prior for square root of stage 2 variance. Not a particular
prior setting is identified as best in all scenarios and they note that uniform prior is not a good alternative if a vague prior is
intended for stage 2 variance.

Browne and Draper [4] for Bayesian analysis of mixed linear and random effects logistic regression models consider
Inv − Ga(ϵ, ϵ) and uniform prior on (0, 1/ϵ) for the stage 2 variance. Their simulation study demonstrates that Bayesian
interval inference with these priors face undercoverage problems in mixed linear models when the number of level 2 units
of the experimental design is small. Gelman [11] considers traditional Inv−Ga(ϵ, ϵ) and Uniform(0,A) hyperpriors and con-
structs a folded-noncentral-t family of priors as hyperpriors for variance parameters in hierarchical models. Unlike Lambert
et al. [15], Gelman [11] suggests the use of uniform prior for a noninformative prior setting. He recommends half-Cauchy
(denoted thereof by HC(0, 1)) distribution, which is included in folded-noncentral-t family, as weakly informative prior for
stage 2 standard deviation and advises not to use the inverse-gamma setting. Of these prior distributions, as indicated in
the article limA→∞ Uniform(0,A) yields proper posterior whereas limϵ→0 Ga(ϵ, ϵ) does not and the posterior inference is
sensitive to the choice of ϵ.

Polson and Scott [22] propose to induce half-Cauchy distribution on stage 2 standard deviation and obtained inverted-
beta priors for stage 2 variance which ultimately led to the class of hypergeometric inverted-beta distributions resulting in
a generalization of the half-Cauchy prior. They qualify the half-Cauchy prior as a sensible default prior for scale parameters
in hierarchical models.

One should note, however, that there are two main aspects with these priors that need attention. First, with these pri-
ors, variance components of different stages are a priori modeled independently although they are linked as they are the
components of the total variation in a response. Second, as presented in Section 3.2, the drawback of these prior structures
is that the posterior inference on the response model coefficients in a hierarchical model is highly sensitive to the choice
of the parameters of these prior distributions. In this article we a priori model the variance components of different stages
jointly by specifying a multivariate prior distribution. Desirable properties of such a joint variance prior density are 1. non-
informative, 2. leads to proper posteriors, and 3. change in the parameters of the variance priors do not effect the posterior
inference on response model coefficients.

For joint prior modeling, we stack stage 1 and stage 2 variances and induce a multivariate hyperprior distribution. We
consider multivariate normal, multivariate skew normal, and generalized multivariate log-gamma distribution as the mul-
tivariate hyperprior distribution on natural logarithms of the variance components and investigate their properties based
on our prototype hierarchical model.

The rest of the article is organized as follows. In Section 2, we discuss certain modeling aspects concerning the variance
components including the informativeness issue, present the proposed joint variance prior setting, and discuss its propriety.
Section 3 presents an extensive simulation study inwhichwe investigate and compare sensitivity of the posterior estimators
of the proposed joint prior to those in the literature where variances of different stages are a priori modeled independently.
In this section, the notion of noninformativeness for a multivariate prior density is furnished and subspace of variance hy-
perparameters to which the posterior inference is rather insensitive is sought through the directional derivative concept.
A data application is presented in Section 4. Finally a discussion on the evaluation of the results and generalization of the
proposed approach for further modeling extensions is given in Section 5.

2. Modeling the variance components

We will consider the basic random coefficient model given in (1). Such basic models are also considered in Bayesian
literature to study variance components in normal hierarchical models [11,22]. The model is
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