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a b s t r a c t

We study asymptotic behavior of conditional least squares estimators for 2-type doubly
symmetric critical irreducible continuous state and continuous time branching processes
with immigration based on discrete time (low frequency) observations.
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1. Introduction

Asymptotic behavior of conditional least squares (CLS) estimators for critical continuous state and continuous time
branching processes with immigration (CBI processes) is available only for single-type processes. Huang et al. [12]
considered a single-type CBI process which can be represented as a pathwise unique strong solution of the stochastic
differential equation (SDE)
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for t ∈ [0,∞), where β, c ∈ [0,∞),b ∈ R, and (Wt)t>0 is a standard Wiener process, N and M are independent
Poisson random measures on (0,∞)3 and on (0,∞)2 with intensity measures dsµ(dz) du and ds ν(dz), respectively,N(ds, dz, du) := N(ds, dz, du)−dsµ(dz) du is the compensated Poisson randommeasure corresponding toN , themeasures
µ and ν satisfy some moment conditions, and (Wt)t>0, N andM are independent. The model is called subcritical, critical or
supercritical ifb < 0,b = 0 orb > 0, see Huang et al. [12, p. 1105] or Definition 2.8. Based on discrete time (low frequency)
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observations (Xk)k∈{0,1,...,n}, n ∈ {1, 2, . . .}, Huang et al. [12] derived weighted CLS estimator of (b, β). Under some second
order moment assumptions, supposing that c ,µ and ν are known, they showed the following results: in the subcritical case
the estimator of (b, β) is asymptotically normal; in the critical case the estimator ofb has a non-normal limit, but the asymp-
totic behavior of the estimator of β remained open; in the supercritical case the estimator ofb is asymptotically normal with
a random scaling, but the estimator of β is not weakly consistent.

Based on the observations (Xk)k∈{0,1,...,n}, n ∈ {1, 2, . . .}, supposing that c , µ and ν are known, Barczy et al. [4] derived

(non-weighted) CLS estimator (bn,βn), of (b,β), where β := β +


∞

0 z ν(dz). In the critical case, under some moment

assumptions, it has been shown that

n(bn −b),βn −β has a non-normal limit. As a by-product, the estimatorβn is not

weakly consistent.
Overbeck and Rydén [21] considered CLS and weighted CLS estimators for the well-known Cox–Ingersoll–Ross model,

which is, in fact, a single-type diffusion CBI process (without jump part), i.e., when µ = 0 and ν = 0 in (1.1). Based on
discrete time observations (Xk)k∈{0,1,...,n}, n ∈ {1, 2, . . .}, they derived CLS estimator of (b, β, c) and proved its asymptotic
normality in the subcritical case. Note that Li and Ma [20] started to investigate the asymptotic behavior of the CLS and
weighted CLS estimators of the parameters (b, β) in the subcritical case for a Cox–Ingersoll–Ross model driven by a stable
noise, which is again a special single-type CBI process (with jump part).

In this paper we consider a 2-type CBI process which can be represented as a pathwise unique strong solution of the SDE
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for t ∈ [0,∞). Here Xt,i, i ∈ {1, 2}, denotes the coordinates of Xt , β ∈ [0,∞)2,B ∈ R2×2 has non-negative off-diagonal
entries, c1, c2 ∈ [0,∞), e1, e2 denotes the natural basis in R2,U2 := [0,∞)2 \{(0, 0)}, (Wt,1)t>0 and (Wt,2)t>0 are indepen-
dent standardWiener processes, Nj, j ∈ {1, 2}, andM are independent Poisson randommeasures on (0,∞)× U2 × (0,∞)

and on (0,∞) × U2 with intensity measures dsµj(dz) du, j ∈ {1, 2}, and ds ν(dz), respectively, Nj(ds, dz, du) := Nj(ds,
dz, du)−dsµj(dz) du, j ∈ {1, 2}. We suppose that the Borel measuresµj, j ∈ {1, 2}, and ν on U2 satisfy somemoment con-
ditions, and (Wt,1)t>0, (Wt,2)t>0,N1,N2 andM are independent.Wewill suppose that the process (Xt)t>0 is doubly symmetric
in the sense thatB =


γ κ
κ γ


,

where γ ∈ R and κ ∈ [0,∞). Note that the parameters γ and κ might be interpreted as the transformation rates of one
type to the same type and one type to the other type, respectively, compare with Xu [23]; that is why the model can be
called doubly symmetric.

The model will be called subcritical, critical or supercritical if s < 0, s = 0 or s > 0, respectively, where s := γ + κ
denotes the criticality parameter, see Definition 2.8.

For the simplicity, we suppose X0 = (0, 0)⊤. We suppose that c1, c2, µ1, µ2 and ν are known, and we derive the CLS
estimators of the parameters s, γ , κ andβ based on discrete time observations (Xk)k∈{1,...,n}, n ∈ {1, 2, . . .}. In the irreducible
and critical case, i.e., when κ > 0 and s = γ + κ = 0, under some moment conditions, we describe the asymptotic
behavior of these CLS estimators as n → ∞, provided that β ≠ (0, 0)⊤ or ν ≠ 0, see Theorem 3.1. We point out that
the limit distributions are non-normal in general. In the present paper we do not investigate the asymptotic behavior of CLS
estimators of s, γ , κ and β in the subcritical and supercritical cases, it could be the topic of separate papers, needing different
approaches.

Xu [23] considered a 2-type diffusion CBI process (without jump part), i.e., when µj = 0, j ∈ {1, 2}, and ν = 0 in
(1.2). Based on discrete time (low frequency) observations (Xk)k∈{1,...,n}, n ∈ {1, 2, . . .}, Xu [23] derived CLS estimators
and weighted CLS estimators of (β,B, c1, c2). Provided that β ∈ (0,∞)2, the diagonal entries ofB are negative, the off-
diagonal entries ofB are positive, the determinant ofB is positive and ci > 0, i ∈ {1, 2} (which yields that the process X
is irreducible and subcritical, see Xu [23, Theorem 2.2] and Definitions 2.7 and 2.8), it was shown that these CLS estimators
are asymptotically normal, see Theorem 4.6 in Xu [23].

Finally, we give an overview of the paper. In Section 2, for completeness and better readability, fromBarczy et al. [8,9], we
recall some notions and statements for multi-type CBI processes such as the form of their infinitesimal generator, Laplace
transform, a formula for their first moment, the definition of subcritical, critical and supercritical irreducible CBI processes,
see Definitions 2.7 and 2.8. We recall a result due to Barczy and Pap [9, Theorem 4.1] stating that, under some fourth order
moment assumptions, a sequence of scaled random step functions (n−1X⌊nt⌋)t>0, n > 1, formed from a critical, irreducible
multi-type CBI process X converges weakly towards a squared Bessel process supported by a ray determined by the Perron
vector of a matrix related to the branching mechanism of X .

In Section 3, first we derive formulas of CLS estimators of the transformed parameters eγ+κ , eγ−κ and
 1
0 esBβ ds, and

then of the parameters γ , κ andβ. The reason for this parameter transformation is to reduce the minimization in the CLS



Download English Version:

https://daneshyari.com/en/article/1145498

Download Persian Version:

https://daneshyari.com/article/1145498

Daneshyari.com

https://daneshyari.com/en/article/1145498
https://daneshyari.com/article/1145498
https://daneshyari.com

