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1. Introduction

In this paper we consider estimation of a general class of semiparametric models which include as special cases the
generalised partially linear varying coefficients model of Lu [26], the generalised partially linear single index model of
Carroll et al. [10] and the robust generalised partially linear model of Boente et al. [8]. These semiparametric models have
been applied in many different areas such as economics, finance, biostatistics and medical statistics, and can be estimated
using different methods and nonparametric estimators: for example Ahmad et al. [1] and Fan and Huang [14] consider
semiparametric least squares estimation with, respectively, nonparametric series and kernels, Carroll et al. [ 10] and Lu [26]
use semiparametric quasi maximum likelihood with kernels, while Boente et al. [8], Bianco et al. [4] and Hu and Cui [19]
consider robust semiparametric estimation with, respectively, kernels and sieves. All of these estimators are derived under
the assumption that all of the data in the sample are observable. However data are frequently missing, especially in medical
and biostatistics, and ignoring this fact or simply excluding the missing data, the so-called complete case analysis, may result
in inconsistent and/or inefficient estimators, with possibly a great loss of information.

In this paper we propose an estimator for generalised partially linear index structure models. We define an index struc-
ture a smooth real valued known function that relates the nonparametric parameter to a set of covariates and possibly a
set of additional unknown finite dimensional parameters. This structure nests together and generalises the single index,
multiple single index and varying coefficient specifications that are widely used in the semiparametric literature. New ex-
amples of index structures are the nonlinear varying coefficient model and the partially parametric interaction model given,
respectively, in (4) and (6). The resulting estimator can be used to estimate the unknown parameters of a large number of
semiparametric models including all of those mentioned above. More importantly it can be used when outliers are present
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and/or when some of the covariates are missing. As noted by Boente et al. [8], Bianco et al. [4] and others, outliers (both
in terms of large deviations of the response from its (conditional) mean - as measured for example by the Pearson resid-
uals - and of outlying values of the covariates) can negatively affect the estimation of the nonparametric component and
thus the estimation of the parametric component as well. To deal with potential outliers we use a real valued function that
downweights high leverage covariates and allow for a robustified objective function, such as that considered by Cantoni and
Ronchetti [9] or by Bianco et al. [5], which yields estimators with bounded influence functions. To deal with missing covari-
ates we assume that they are missing at random (MAR henceforth). MAR is commonly assumed in many statistical models
with missing data - see Little and Rubin [25] for a comprehensive review - and it specifies that the probability of missing
- often called selection probability - depends on variables that are always observed. To deal with the MAR covariates we
use the inverse probability weighting (IPW henceforth) method [ 18], which has been used in a number of statistical models
with missing data including regressions, see for example Robins et al. [34] and Robins and Rotnitzky [33], treatment effect
estimation, see for example Hirano et al. [ 17], and nonclassical measurement error models, see for example Chen et al. [11].

The semiparametric estimator we propose is a two-step iterative one based on an IPW objective function. In the first step
we use the local linear estimator (see Fan and Gijbels [ 13]) to estimate the nonparametric component. In the second step we
use the estimates obtained in the first step to replace the unknown nonparametric parameter and estimate the parametric
components globally. These two steps are then iterated until convergence. This type of iterative estimation is often used in
the semiparametric literature, see for example Carroll et al. [10], Liang [23], Lu [26] among others. The resulting estimator
is fairly general and can be applied in the context of semiparametric maximum likelihood, quasi likelihood and general M
estimation, as well as robust semiparametric estimation including robust deviance and robust quasi likelihood. For example
it can be applied to semiparametric regression models (see for example Ruppert et al. [36]), to robust semiparametric
generalised linear models (see for example Boente et al. [8]) and to semiparametric misspecified likelihood based linear
models (i.e. models in which the second Bartlett identity does not hold) with MAR covariates.

We note that recently Qin et al. [32] proposed a semiparametric estimator based on the same IPW objective function as
that used in this paper. They considered a generalised partially linear model and showed the asymptotic normality of the
finite dimensional parameter using sieve estimation (regression splines). The use of sieve estimation in the context of the
more general model considered here would be an interesting alternative to the estimation procedure of this paper.

In this paper we make the following contributions: First we establish the asymptotic normality of the estimators of the
nonparametric and parametric components considering both a parametric and a nonparametric specification for selection
probabilities. The resulting distributions are characterised by a complicated covariance matrix, which however can be con-
sistently estimated using a weighted bootstrap procedure, that is well suited for the type of data considered in this paper.
Second we show that estimation of the selection probabilities leads to more efficient estimators. However for the estimator
of the nonparametric component, efficiency gains are possible only if the selection probabilities are estimated nonpara-
metrically. Third we illustrate the main results of the paper by considering two general examples: semiparametric quasi
likelihood and semiparametric (robust deviance) estimation with missing covariates. Fourth we use simulations to assess
the finite sample properties of the proposed estimation method. Finally we show that when all the covariates are observ-
ables and no outliers are present the proposed estimator is semiparametric efficient in the sense of Bickel et al. [7]. These
results generalise and/or complement a number of results including those obtained by Carroll et al. [ 10], Liang et al. [24], Fan
and Huang [ 14], Boente et al. [8], Liang [23], Lu [26], Croux and Haesbroeck [12], Hu and Cui [19], Qin et al. [32] and others.

The rest of the paper is structured as follows: Section 2 introduces the statistical model and the estimators. Section 3 con-
tains the main results of the paper; Section 4 presents the two main examples while Section 5 reports the results of the sim-
ulation study. All the proofs and further simulations evidence can be found in the supplemental material (see Appendix A).

The following notation is used throughout the paper: /" and “diag” denote, respectively, transpose and block diagonal
matgix, “®" and “vec” are the standard Kronecker and the vec operator, ||| is the Euclidean norm and finally for any vector
v®? = .

2. The model and the estimator

We consider a statistical model where the response variable Y is related to a set of covariates X, Z, and U by a generalised
partially linear index structure n (X' + ¢ (Z, a (U, 6))) where : X x Z x U x B x A x © — R is a known smooth
function, ¢t : Z x U x A x ® — R represents a known index structure discussed below, X C R¥, Z C RP, U C RY,
B and 0 are, respectively, a k and an [ dimensional vectors of unknown parameters, « (U, 6) is a p dimensional vector of
unknown functions depending on the covariates U and possibly 6. To explicitly emphasise the generalised partially linear
index structure of the statistical model let

(Y. n(X'B+1Z, a(U,0)) o X, 2) (1)

denote a real valued objective function, where w (-) is a real valued function that is equal to 1 in case of standard estimation
or downweights high leverage covariates in case of robust estimation, see for example (18). To simplify the notation let
n(X'B+1Z aU,0)) =np a0 andi()oX,2) =g, ().

In the absence of outliers, possible specifications of the objective function ¢ (-) include a conditional (log) density of
the response given the covariates or a quasi-likelihood function. For example ¢ (-) could be a member of the canonical
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