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a b s t r a c t

In this article, the two-step method for prediction, which was proposed by Li et al. (2012),
is extended for modelling grouped data, which besides having near-collinear explanatory
variables, also having different mean structure, i.e. the mean structure of some part of the
data is more complex than other parts. In the first step, inspired by partial least squares
regression (PLS), the information for explanatory variables is summarized by a multilinear
model with Krylov structured design matrices, which for different groups have different
size. The multilinear model is similar to the classical growth curve model except that
the design matrices are unknown and are functions of the dispersion matrix. Under such
a multilinear model, natural estimators for mean and dispersion matrices are proposed.
In the second step, the response is predicted through a conditional predictor where the
estimators obtained in the first step are utilized.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

One common problem in statistical analysis is to build relationships among a set of explanatory variables x and a re-
sponse variable y. To apply ordinary least squares (OLS) theory is one of the classical choices. However, the OLS predictor
does not work well in prediction of new observations when the explanatory variables are near-collinear. It may be due to
the unrealistic large 6 and the unstable estimator of 6−1 in the OLS coefficient, i.e. ω′6−1, where 6 is the variance of x and
ω is the covariance between x and y. Therefore, several methods have over the years been proposed which intend to con-
struct new estimators using an approximation of 6−1. For example, ridge regression uses (6 + kI)−1 to approximate 6−1

where k is a parameter needed to be estimated and I is the identity matrix. Principal component regression (PCR) uses the
largest eigenvalue and the corresponding eigenvectors of 6 to approximate 6−1. Partial least squares regression (PLS) can
be considered as approximating 6−1 by a polynomial sequence of 6, which generates a Krylov space, i.e. the linear space
generated by (6ω : 62ω : · · · : 6iω).

In Li and von Rosen [7]’s paper, a two-step method for prediction was developed. The main purpose of the paper was to
link PLSwith classicalmultivariate linearmodels theory. In the first step,which could be considered as a dimension reduction
step, a multivariate linear model was applied to summarize the information in the explanatory variables. Inspired by PLS, a
Krylov structuredmatrix was used as designmatrix in the linearmodel. In the second step, the prediction step, a conditional
approachwas applied. Concerning dimension reduction, it is worthmentioning that Cook and coworkers (see Cook et al. [2])
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develop envelopemodels, a general methodology for model reduction in prediction problems, which has a close connection
to PLS, i.e. a proper version of the developed method is identical to the population version of PLS (see Cook et al. [1]).

Compared with envelope models, the two-step method in this article is more specific in the use of the Krylov design ma-
trix. The two-stepmethod in a special case is identical to the population version of PLS. In comparisonwith PLS, the two-step
method is non-algorithmic and gives higher flexibility to model different types of structures, for example, different groups.

It is common that data due to experimental conditions consist of different treatment groups, e.g. gender and season
are factors which form groups. Treatment group effects have a variety of forms. For example, it may be expressed as having
differentmean levels among groups. In other cases, data fromdifferent groupsmay have differentmean structures e.g. linear
in one group and non-linear in another group. An example is the silage data set discussed in Li et al. [8] which is a data
set with an inherent group effect. The study aims to determine the chemical compounds in silage by Fourier mid-infrared
spectroscopy. Data was collected over several years from different experiments, which comprised a variety of previous
ensiling studies with objective to investigate crop type, harvesting date, silage additives, etc. It is natural that the chemical
compounds e.g. sugar content is high in one experiment, but relatively low in another experiment, due to different crop
types. In addition, part of the data from special experiments has silage additive compounds, e.g. ammonia, which do not
exist in other experiments. The chemical compounds from different groups (experiments) do not only have different levels,
but also different structures. As a result, a non-standard model is needed to fit a part of the data compared to other parts.
If there is no near-collinear structure in the data and enough independent observations, it is appropriate to apply the
extended growth curve model, which will be explained later. If using classical PLS, it is likely that one has to model the
groups separately, since the classical PLS is not designed for grouped data. In the literature, there are some other versions of
PLS which are proposed to handle grouped data such as least square PLS [4], sequential and orthogonalized PLS [9]. In this
paper, the two-step approach in Li and von Rosen [7] will be extended to deal with group structures.

The basic model and the two-step method are explained in Section 2. In Section 3, the extended two-step method is
stated. Themain result of the paper appears in Section 4, where the estimators ofmean and variance parameters are derived.
Finally, we remark that themain aim of the present paper is not to improve PLS. The focus is instead to combine PLS thinking
with multivariate linear models through Krylov spaces which naturally appear when approximating 6.

2. Background

2.1. Basic model

Let y be a k-dimensional random vector and X = (x1, x2, . . . , xk) be a p× k-randommatrix, jointly normally distributed
with E[X] = µxc = (µx1, µx2, . . . ,µxk) and E[y ′

] = µyc = (µy1, µy2, . . . , µyk) and D[X] = Ik ⊗ 6, C[X, y] = Ik ⊗ ω, i.e.
X
y ′


∼ N(p+1),k


µxc
µyc


,


6 ω

ω′ σ 2
y


, Ik


, (2.1)

whereNq,r(µ, 6, Ψ) stands for thematrix normal distribution. Themodel in (2.1) usually is used for data with group effects,
i.e. data from k different groups share a common covariance structure, but have different means. If k = 1, there is no group
effect involved in the data and the model in (2.1) becomes

x
y


∼ N(p+1)


µx
µy


,


6 ω

ω′ σ 2
y


. (2.2)

2.2. The two-step method

Based on the model in (2.2), the two-step method for prediction is formulated as follows: let ω be known,

(i) suppose x = ωγ + ε, ε ∼ Np(0, Σ) and γ is an unknown parameter,
(ii) predict via the conditional expectation: ŷ = ω′Σ−1

(x − µx) + µy.

Via Step (i), information from x is summarized i.e. µx is obtained by deriving an estimator of γ . Step (ii) is the prediction step,
i.e. ŷ is predicted through µx and Σ. However, the major problem is to estimate Σ−1 in Step (ii). If predictors are collinear
in the data, then the usual estimators, e.g. a moment estimator, will being singular or close to be singular leading to a poor
predictor. Based on the Cayley–Hamilton theorem, 6−1 can be presented in a polynomial form, i.e. 6−1

=
p

i=1 ci6
i−1

≈a
i=1 ci6

i−1, for some constants ci and a ≤ p. In theory, ci is a function of 6. However, here we treat it as an unknown
constant needed to be estimated. Then,

x = ωγ + ε = 66−1ωγ + ε = 6

p
i=1

ci6i−1ωγ + ε

≈

a
i=1

6iω(ciγ ) + ε = 6Gaβ + ε = Aβ + ε, (2.3)
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