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h i g h l i g h t s

• We show that the popular association indices fail to detect and rank dependence.
• The popular association indices under-represent the dependence of elliptical models.
• The mutual information detects and ranks dependence of absolutely continuous models.
• The mutual information measures the utility of dependence between random variables.
• We use a generalized information index to rank dependence of singular distributions.
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a b s t r a c t

This paper first illustrates that amutual information index detects and ranks dependence of
a wide variety of absolutely continuous families, but the popular association and variance
reduction indices fail to serve as such ‘‘common metrics’’. We then elaborate on some the-
oretical merits of the mutual information and give several results. The mutual information
provides a notion of the utility of dependence for predicting random variables and quan-
tifies howmuch the joint distribution is more informative about the variables than the in-
dependent model. We present insightful partitions of dependence among the components
of a random vector, for a class of models recently proposed for dependence of uncorrelated
variables, and for the elliptical families. We also recall that the mutual information is not
applicable to singular distributions and give some results for a generalized information in-
dex for these models. The generalized index is derived for the Marshall–Olkin copula and
for a new singular copula that represents the dependence of the consecutive terms of the
exponential autoregressive and related processes.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Independence between random variables or vectors stipulates sharp relationships between their joint, marginal, and
conditional distributions. Any divergence from the independence leads to a probabilistic relationship where the random
variables provide information about each other. Divergence measures between the joint distribution and the independent
model capture all forms of dependence; Micheas and Zografos [45] provide several results and many references. The most
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well-known and important divergence measure of dependence is the mutual information [45]. We study this measure,
denoted here asM , via the four objectives given as follows.

First, we address the problem of measuring dependence as a practical issue. For studying and modeling dependence ‘‘a
common metric’’ [55] is needed to compare various families of distributions or their copulas. Common metrics ‘‘should be
as general as possible to permit modeling dependence of a wide variety of situations’’ [13], detect dependence in any form,
exist for large collections of distributions, and order their dependence [50]. We illustrate that a mutual information index
for the absolutely continuous distributions, denoted here as δ2, provides such a common metric. This index was introduced
by Linfoot [42] and is well-known [8,36]. We provide a comparison showing that δ2 detects and ranks dependence within
and between some widely used families of models and some models that recently have been studied [22,24]. The popular
association indices (the product moment correlation, Spearman’s rank correlation, Kendall’s τ ) and the fraction of expected
variance reduction by conditioning fail to reveal and rank various forms of dependence.

Second, we address the conceptual issue of the utility of dependence. The virtue of dependence materializes through the
probabilistic information that the variables provide about each other. The usual notions of association and variance reduction
are not sufficiently general to recognize the usefulness of dependence beyond some specific forms.We argue that the utility
interpretation ofM used in the Bayesian framework [4,41] extends more generally to the expected utility of dependence in
terms of gain in predicting a random variable through its conditional distributions instead of its marginal distribution. Other
divergence functions, while detect and rank dependence [34,35,45], generally lack the expected utility representations in
terms of the uncertainty reduction.

Third, we give new results on partitioning of dependence in three contexts. (a) We give a partition of dependence of a
random vector which implies the super-additivity ofM proved by [45]. (b) We extend the result of [6] on theM between the
sum of two independent random variables and each summand to the case when the summands are not independent. This
result gives a decomposition of the dependence for the families ofmodels recently defined in terms of the convolution prop-
erty [24]. (c) We show that M of each elliptical family decomposes into two parts: one part is the M of the Gaussian family
(a function of the correlation matrix), and the other part is M of the model in the family with orthogonal scale. Application
to the Student-t family provides insights about the dependence of the family.

Fourth, we recall thatM is not applicable to singular distributions because there is a positive probability for a functional
relationship between the variables. We give some results for a generalization of δ2 used by [25]. We derive the generalized
index for the Marshall–Olkin copula and for a new singular copula that represents the dependence of the consecutive terms
of the exponential autoregressive process [32] and related processes [58].

This paper is organized as follows. Section 2 defines notations, the information functions, and three broad families of dis-
tributions used in the paper. Section 3 compares the aforementioned indices for serving as ‘‘commonmetrics’’ and presents
the interpretation of M as the utility of dependence. Section 4 presents several results for M . Section 5 illustrates the in-
applicability of M to singular distributions and presents some results for a generalization of δ2. Section 6 summarizes the
paper and provides some concluding remarks. An Appendix shows derivations of some indices.

2. Preliminaries

We denote by F and G the cumulative distribution functions and by f and g their probability density functions (pdf’s).
For most of the paper, we consider bivariate distributions of two random variables, X1 and X2, and denote their joint pdf by
f (x1, x2), the marginal distribution of Xi by Fi and its pdf by fi, the conditional distribution of Xi given Xj = xj by Fi|j, i ≠ j,
and its pdf by fi|j. Multivariate dependence is presented when there is little need for additional notations.

Several examples and results are provided for the following three broad families of the absolutely continuous distribu-
tions.

1. The families with d-dimensional elliptical pdf’s:

fh(x|Σ,µ) = k|Σ |
−1/2h


(x − µ)′Σ−1(x − µ)


,∈ ℜ

d, |Σ | > 0, (1)

whereµ is the location vector,Σ = [σij] is a positive-definite scalematrix, |Σ | denotes the determinant, and h(·) = hd(·)
is referred to as the density generator which generally includes a parameter (vector), in addition to (µ,Σ) [31].

2. The families with bivariate pdf’s in the following form:

fq(x1, x2|β) = f1(x1)f2(x2)[1 + βq(x1, x2)], (x1, x2) ∈ ℜ
2, |q(x1, x2)| ≤ B, |β| ≤ B−1, (2)

where fi(xi), i = 1, 2 are the marginal pdf’s, and the link function q(x1, x2) is a measurable bounded function such that
ℜ2 q(x1, x2)f1(x1)f2(x2)dx1dx2 = 0. For q(x1, x2) = q1(x1)q2(x2), (2) gives Sarmanov families, so we refer to families

with pdf’s in form of (2) as the Generalized Sarmanov families.
3. The families related to the bivariate Pareto Type II distribution with survival function

F̄(x1, x2|α) = (1 + x1 + x2)−α, xi ≥ 0, α > 0. (3)

We also provide results for singular distributions where a functional relationship is probable, 0 < P[Xi = φ(Xj)] = π <
1, i ≠ j. These distributions do not have bivariate density relative to the Lebesguemeasure which are needed for computing
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