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h i g h l i g h t s

• We (re)introduce a class of linear shrinkage estimators of the covariance matrix.
• We follow an empirical Bayesian approach to obtain shrinkage intensity and target.
• The method is generally applicable to any class of target matrices.
• Estimators are found to outperform those of the state-of-the-art Ledoit–Wolf class.
• The implementation is computationally light.
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a b s t r a c t

In this paper, we describe and study a class of linear shrinkage estimators of the covariance
matrix that is well-suited for high dimensional matrices, has a rather wide domain of
applicability, and is rooted into the Gaussian conjugate framework of Chen (1979). We
propose here a new look at this framework. The linear shrinkage estimator is thereby
obtained as the posterior mean of the covariance, using a Bayesian Gaussian model with
conjugate inverse Wishart prior, and deriving the shrinkage intensity and target matrix by
marginal likelihoodmaximization.We introduce some extensions to the seminal approach
by deriving a closed-form expression of themarginal likelihood as well as computationally
light schemes for its maximization. Further, these developments are implemented in
a variety of situations and include a simulation-based performance comparison with a
recent, widely used class of linear shrinkage estimators. The Gaussian conjugate estimators
are found to outperform these estimators in every tested situation where the latter are
available and to be more widely and directly applicable.

© 2014 Elsevier Inc. All rights reserved.

1. Context and motivations

Estimating the covariance matrix 6 of a p-dimensional Gaussian model is a common task in statistical analysis. Yet, it is
also one which is generally recognized as particularly difficult and challenging (see, e.g., [26]). Recently, the availability of
very large datasets from climate science, genomics, finance, marketing applications – among others – has exacerbated this
problem with sample sizes n often much smaller than the matrix dimension p (see, e.g., [17,22,27,14]). In situations where
n < p the sample covariance matrix S performs poorly and is not positive definite, i.e. it is non invertible. When p/n has
a fixed limit it is known that S is not consistent [8]. When n > p, its positive-definiteness is insured but its eigenvalues
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Table 1
Mapping of the nine illustrative target structures used in the article.

Variance
Unit variance Common variance Unequal variances

Correlation
ρij = 0 A1 A2 A3
ρij = ρ B1 B2 B3
ρij = ρ|i−j| C1 C2 C3

tend to be distorted in such a way that S is ill-conditioned, implying that inverting it is possible but amplifies the estimation
error. Alternative estimators of6 have been proposedwithin both frequentist and Bayesian approaches, yielding substantial
performance improvements compared to the sample covariance estimator S for small sample size n. Among these, linear
shrinkage estimators are obtained as a weighted average of S and a covariance matrix 16 = α1 + (1 − α)S, (1)

where the so-called shrinkage target 1 is assumed to have some degree of similarity with 6. The value of the target matrix
1 is usually not assumed to be known; it is commonplace to assume instead that1 has a general structure, i.e.1 is assumed
to belong to a given set F ⊂ S+∗ which reflects a structural constraint (where S+∗ denotes the set of symmetric positive
definite matrices). We thus refer to the set F going forward as the target structure. The choice of F is subjective and
reflects an a priori belief about 6 that may be more or less precise. For instance, it is commonplace to assume that 1 is
equal to the identity matrix (F = {I}), is proportional to the identity matrix (F = {λI | λ > 0}) or is diagonal (F =

{3 | 3 = diag(λ1, . . . , λp), λi > 0}). Other more general structures are described in Appendix A and are summarized in
Table 1. Beyond these general structures, the choice of F can also be specific, resulting from considerations that are ad-hoc
to a particular context. For instance, an application to portfolio management motivated [16] to choose a structure derived
from a stock return model ([24] and Appendix A).

No matter the choice of target structure F , Eq. (1) is thus used to constrain the estimator 6 of 6. The shrinkage allows
this structural constraint to be flexible as 6 does not need to fully match the target structure—i.e. the assumption 6 ∈ F is
not required. Indeed, the introduction of the weight α – referred to as the shrinkage intensity – enables to adjust the level
of structural constraint. If F is highly relevant, α should be chosen close to one and even equal to one if 6 ∈ F . Conversely
if the relevance of F is poor, then α should be chosen close to zero. The shrinkage problem is thus to jointly determine an
optimal value of 1 ∈ F together with an optimal value of α in [0, 1].

In a frequentist framework, the shrinkage estimation strategy has been often described as one of building an optimal
tradeoff between the bias of the estimator and its variance [16]. Indeed, S is known to have no bias but has a high variance –
especially for small n – whereas on the other hand, 1 has a small variance due to the constraint imposed by its underlying
structure, but does have a bias if this structure does not perfectly match with that of 6. It is hoped that a weighted average
of these two extreme estimators may thus yield a new, improved estimator which would balance bias and variance in
an optimal way, thus borrowing strength from both extremes. This intuitive idea is discussed extensively and formalized
mathematically in the seminal work of Ledoit and Wolf [16,17]. In line with the intuitive idea of an optimal bias–variance
tradeoff, the framework introduced by these authors, hereinafter referred to as the LW framework, consists in minimizing
in α and 1 over [0, 1]×F the mean squared error (mse) E(∥α1+ (1−α)S−6∥

2)where ∥.∥ denotes the Frobenius norm
defined by ∥A∥

2
= Tr(A · A′)/p for any p × p matrix A, and where E(.) denotes the expectation w.r.t. the random matrix

S. Under this formulation, the shrinkage estimator can be viewed geometrically as the orthogonal projection of 6 on the
segment generated by S and 1 (Fig. 1). The minimization yields:

1o = argmax
1∈F

(E(Tr((S − 1)(S − 6))))2

E(Tr((S − 1)2))
and αo =

E(Tr((S − 1o)(S − 6)))

E(Tr((S − 1o)2))
. (2)

Of course, Eq. (2) cannot be applied straightforwardly because the expectations in S therein must be evaluated to
approximate the so-called oracle estimators αo and1o. The latter quantities depend on6 and are thus not known in practice
(hence the term ‘‘oracle’’) andmust be replaced by empirical estimates to obtain the final estimatorsαlw and1lw . In favorable
situations where explicit calculations can be conducted, this approach yields estimators of α and 1 that have a closed form
and may also have some suitable asymptotic properties. Whether or not such explicit calculations are possible depends on
the choice of the target structure F . This approach was successfully applied for the first time to our knowledge in [16] to
the aforementioned stock return target structure. In [17], the same authors then adapted this approach to the generally
applicable case F = {λI | λ > 0} to obtain:

1lw =
Tr(S)
p

I and αlw = min


n

i=1
∥S − xix′

i∥
2

n2

Tr(S2)− Tr2(S)/p

 , 1
 . (3)

Then, [23] developed further adaptation and extension in the LW framework to cover four additional target structures
(A1, A3, B1, B2). More recently, [3] have shown that the estimators of Eq. (3) can be improved substantially, especially for
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