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a b s t r a c t

For a vector of multivariate normal when some elements, but not necessarily all, are trun-
cated, we derive the moment generating function and obtain expressions for the first two
moments involving the multivariate hazard gradient. To show one of many applications of
these moments, we then extend the two-step estimation of censored regression models to
longitudinal studieswith nonignorable dropout, in the sense that the probability of dropout
depends on unobserved, ormissing, observations.With nonignorable dropout, directmaxi-
mization of the likelihood function can be computationally intensive or even infeasible. The
two-stepmethod in such cases can be an adequate substitute. In a set of simulation studies
the developed two-step method and the maximum likelihood (ML) method are compared.
It turns out that the proposed method preforms at least as well as the ML and provides a
convenient alternative that can easily be implemented in standard software.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Incomplete data are a practical problem in many areas of social or medical studies. In longitudinal studies, for example,
researchers are usually confronted with dropout, that is, some participants leave the study permanently and their outcome
measurements are missing. Any meaningful analysis of longitudinal data with dropout should take the process of creat-
ing incompleteness into account because the resulting conclusions highly depend on the dropout process. Following the
terminology in [16,13,1] provide a useful classification of dropout processes: completely random dropout (CRD), random
dropout (RD) and nonignorable (or informative) dropout (NIG). Ignoring the dropout process (i.e., assuming CRD and/or RD)
is not always the best solution, or even realistic in many cases. For instance, a longitudinal study on the effect of a treatment
on depression can be an example of NIG, where the most severely affected patients tend to be the most dropouts because
they are too ill to participate in the study on a regular basis. Consequently, rendering an NIG process cannot generally be
disregarded and such incomplete data should be treated with great care.

Under NIG, the analysis of incomplete outcomes should be based on joint modeling of the scientific interest model (e.g., a
regression of the outcomes on explanatory variables) and the process governing the dropout (i.e., the dropout process). One
possible approach is the so-called selectionmodel [8], which decomposes this joint distribution to themarginal distribution
of the outcomes (the scientific interest model) and the conditional distribution of the dropout process given the outcomes.

Heckman [8] and Diggle and Kenward [1], among the others, assumed a (multivariate) normal distribution for the
marginal distribution of the outcomes and a probit (or logit) function for the dropout process. Two general procedures
exist for parameter estimation of this model: Maximum likelihood (ML) and the Heckman’s two-step. Broadly speaking, the
former is more efficient than the latter [1]. The direct ML, however, can be computationally more expensive, particularly in
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multivariate missing data (e.g., in longitudinal studies with dropout), because it requires evaluation of multiple probability
integrals. The estimation procedure is therefore very challenging and even infeasible in such cases, and there are not many
available statistical programs tomaximize the likelihood functionwhen it involves the evaluation of high-dimensional inte-
grals. The likelihood function may also have several local maxima and one should be prepared to repeat the analysis several
times, with different starting values of the parameters, to guard against misleading inference.

The two-step method, on the other hand, offers a straightforward and less computationally challenging alternative that
can be implemented with standard statistical programs. The estimators of the two-step method are also asymptotically
equivalent to the ML estimates, or at the very least can be considered as start values for the ML estimation. In this paper we
thus develop the two-step method for longitudinal studies with dropout.

It should be emphasized that implementation of the two-step method requires numerical computation of multiple
integrals in a multivariate normal distribution. However, this is not an issue anymore because several algorithms have been
proposed for calculation of these integrals. Genz [3,4], among the others, proposed an algorithm that numerically computes
the multivariate normal integral by applying randomized lattice rule on the transformed integral. Details can be found
in [5]. The approach of Genz can effectively evaluate multiple integrals up to 100 dimensions, and is widely available in
major statistical programs such as R (pmvnorm function), Stata (ghk function), Matlab (mvncdf function), SAS (mvt SAS/IML
program), and many more.

The two-step method estimates the model parameters in two steps. The first step models the probability of observing
the outcome by a (multivariate) probit model, and the second step models the expectation of the outcome conditional on
having been observed, i.e., a regression of the outcome on the explanatory variables only for the observed outcomes. The key
element to implement the two-step method is the evaluation of the conditional distribution of the outcomes in the second
step. To do so, moments of a truncated multivariate normal distribution have to be calculated. Many authors have reported
the calculation of the moments of a truncated multivariate normal distribution (e.g., [9,7]). These calculations, however,
have been done by direct integration, which are suitable only for low-dimensional multivariate normal distributions. In
contrast, [14] obtained compact expressions for the first twomoments of a truncatedmultivariate normal distribution using
the moment generating function (MGF). The author considered a case where all elements of a multivariate normal random
vector are truncated on the left. As opposed to [14], we here need to consider situations in which the multivariate normal
randomvector is truncated in some elements, but not necessarily all, sowe derive theMGF alongwith the first twomoments
when some elements of the multivariate normal random vector are truncated. To show one of many applications of these
moments, we then use them to develop the two-step method in longitudinal studies with dropout.

It is important to mention that the two-step and ML methods require invoking assumptions about the distribution of
the outcomes, i.e. the multivariate normality. This assumption, however, cannot be verified from the observed data, and the
results are highly sensitive to departure from normality. Therefore, any conclusion can be misleading if this assumption is
violated. We will return to this point in the conclusion section.

The remainder of this paper is organized as follows. The MGF for the truncated multivariate normal distribution when
some of its elements are truncated from the left is derived in the next section, as well as the expressions for the first
two moments. Section 3 uses these expressions to extend the two-step method to longitudinal studies with dropout. A
comparison of the ML and two-step methods through a set of simulation studies is presented in Section 4. Some concluding
remarks are given in the last section.

2. Truncated multivariate normal distribution and its moments

We start with some notation. Let Z = (Z1, . . . , Zk) be a multivariate standardized normal random variables with zero
mean vector and correlation matrix R, where its diagonal and off-diagonal elements are 1 and ρij, respectively. Also, let ∇z
denote the gradient operator (∂/∂z1, . . . , ∂/∂zk)′ so that ∇zf (z) is the gradient vector and ∇z∇

′
zf (z) is the Hessian matrix

for any function f (z). We use the abbreviation ∇
2 for ∇∇

′ too. For a constant vector a, ∇(a) denotes the gradient of f (z)
evaluated at a. For a vector transformation w(z), ∇[w(z)]′ is the matrix of the first partial derivatives of the elements of
w with ijth element ∂wj/∂zi. We suppress subscripts i and j from the notation for convenience. Using the ‘chain rule’ of
derivation, we can write

∇zf (w(z)) = ∇z[w(z)]′∇wf (w(z)).

Now suppose that some elements of Z, say k1, are fully observed but the rest(k2 = k− k1) is truncated on the left by values
in the vector a = (ak1+1, . . . , ak)′. Without loss of generality, we assume that the first k1 variables are not truncated. In
order to construct the MGF, Z needs to be partitioned as

Z =


Z1
Z2


,

where Z1 and Z2 are the sets of non-truncated and truncated variables, respectively. Accordingly, the correlation matrix R
is partitioned as

R =


R11 R12
R21 R22


,
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