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a b s t r a c t

We study the problem of ergodicity, stationarity and maximum likelihood estimation for
multinomial logistic models that include a latent process. Our work includes various mod-
els that have been proposed for the analysis of binary and, more general, categorical time
series. We give verifiable ergodicity and stationarity conditions for the analysis of such
time series data. In addition, we studymaximum likelihood estimation and prove that, un-
dermild conditions, the estimator is asymptotically normally distributed. These results are
applied to real and simulated data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Motivated by the work of Russell and Engle [36,37], who proposed a new approach to model financial transactions data,
we study the problem of ergodicity, stationarity andmaximum likelihood estimation for the so called autoregressive condi-
tional multinomial (ACM) model with the logistic link, and its generalizations. More specifically, Russell and Engle [36,37]
develop a model for the joint distribution of discrete price changes and durations conditional on the observed history. This
joint distribution of both processes is decomposed into the product of the conditional density of the mark and the marginal
density of the arrival times, both conditioned on the past filtration of the joint information set. Modeling of the conditional
density of the mark is accomplished by the ACM model of order (l1, l2), which is a general class, contained in the class in-
troduced by model (8), when l1 = l2 = 1. The authors examine theoretical properties of the model. However, the issue
of obtaining sufficient conditions for the transaction price process to be stationary and ergodic, has not been investigated
thoroughly in the literature, to the best of our knowledge. We address the problem of stationarity and ergodicity for the
general case of model (8); see Theorem 1. The goal of this contribution is to provide the necessary conditions, under which
the MLE estimator is asymptotically normally distributed; see Lemma 1 and Theorem 2. One version of the ACM model is
based on multinomial regression; a method with generalizes naturally the standard logistic regression.

An alternative approach to the ACM class of models is based on the probit link function. Such autoregressivemodels have
been considered by Zeger and Qaqish [41], Rydberg and Shephard [38], Kauppi and Saikkonen [27], among others. The work
by de Jong and Woutersen [10] provides asymptotic results for the case of the dynamic probit model (4).
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Our approach is based on the theory of generalized linear models, see [31], and in particular our focus is on the multino-
mial distribution. It is an elementary exercise to show that the multinomial distribution belongs to the multivariate expo-
nential family and as such, the theory of generalized linear models can be applied for modeling various types of categorical
data; nominal, interval and scale. In this contribution we will be working with nominal data and therefore the multinomial
logistic model is the natural candidate for model fitting; see [24,14], [28, Ch. 3], [16] for further discussion on modeling
issues regarding categorical data.

We note thatMarkov chains provide a simple but important example of categorical time serieswhere lagged values of the
response are important in determining its future states. Markov modeling in the context of categorical time series however,
can be problematic for two reasons. First, as the order of theMarkov chain increases so does the number of free parameters;
in fact, the number of free parameters increases exponentially fast. In addition, the assumption of Markov property requires
the specification of the joint dynamics of the response and any possible covariates observed jointly; such a specification
might not be possible, in general.

We will be studying models for binary and, more generally, categorical time series, which are driven by a latent process
or a feedback mechanism. This type of models is quite analogous to GARCHmodels – see [3] – but they are defined in terms
of conditional log-odds instead of conditional variances. Such feedbackmodelsmake possible low dimensional parametriza-
tion, yet they can accommodate quite complicated data structures. Paradigms of feedback models, in the context of count
time series for example, have been studied recently by Fokianos et al. [17], Franke [20], Fokianos and Tjøstheim [18], Neu-
mann [32], Fokianos and Tjøstheim [19] and Doukhan et al. [11]. In particular, we note that this contribution is closer to
the modeling approach suggested by Fokianos and Tjøstheim [18], because the main idea is essentially to use the canonical
link process to model the observed data. Several other models for the analysis of categorical data have been studied; see the
books by Joe [22] and MacDonald and Zucchini [30] and the recent articles by Biswas and Song [2] and Weiß [40].

The outline of the paper is as follows. Section 2 puts forward the main model that we consider and discusses some of
its properties. Section 3 develops results regarding its probabilistic properties. Section 4 discusses maximum likelihood es-
timation. In Section 5, we verify all the theoretical results via a simulation study for two special cases of model (8) that
are of specific interest that is model (3) and model (7). Finally, in Section 6 we perform a real data analysis, where we give
additional motivation for financial applications. An Appendix contains the proofs of all theoretical results.

2. Dynamic modeling of binary and categorical time series

Wewill be interested on a categorical time series, say {Ỹt , t = 1, . . . ,N}, where N denotes the sample size. Letm be the
number of possible categories. This means that for each t , the possible values of Ỹt are 1, 2, . . . ,m− 1,m, corresponding to
the first, second category and so on. In general, and especially for nominal data, the aforementioned assignment of integer
values to the categories is rather arbitrary. It is usually made as a matter of convenience, and it should be clear that such an
assignment is not unique. However, it is useful to note, that regardless of any assignment, the tth observation of a categorical
time series, can be expressed by the vector Yt = (Y1t , Y2t , . . . , Yqt)

T of length q = m − 1 with the following elements

Yjt =


1, if the jth category is observed at time t ,
0, otherwise,

for t = 1, 2, . . . ,N and j = 1, 2, . . . , q. Consider an increasing sequence of σ -fields, say {Ft}t≥1, which will be specified in
detail later. Denote further by pt = (p1t , p2t , . . . , pqt)T the vector of conditional success probabilities given Ft−1, that is

pjt = P(Yjt = 1|Ft−1) = E(Yjt |Ft−1), t = 1, 2, . . . ,N, j = 1, 2, . . . , q.

It is clear that the last category is recovered by the correspondence

Ymt = 1 −

q
j=1

Yjt and pmt = 1 −

q
j=1

pjt .

In what follows d, A, B are generally unknown parameters. In fact, d is a real vector of dimension q and A, B are q × q real
matrices. Even though these symbols will be employed for defining distinct models, their meaning will be clear from the
context.

Our focus is on developing and studying models for categorical time series, which include a feedback mechanism or an
unobserved hidden process. For instance, one can consider the following linear model

pt = d + Apt−1 + BYt−1, t ∈ Z, (1)

which can be viewed as a simple generalized linear model with identity link for categorical data. Suchmodel was suggested
by Russell and Engle [36] and Qaqish [34]. However model (1) cannot be applied easily to data, since its structure implies
complicated restrictions on the parameters d, A and B. This is so, because each element of the vector of probabilities pt should
lie between zero and one. In fact, model (1) imposes more complicated restrictions on d, A, B, when covariates are under
consideration.
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