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a b s t r a c t

Consider three different but related problems with auxiliary information: infinite
population sampling or Monte Carlo with control variates, missing response with
explanatory variables, and Poisson and rejective sampling with auxiliary variables. We
demonstrate unified regression and likelihood estimators and study their second-order
properties. The likelihood estimators are second-order unbiased but the regression
estimators are not. For the missing-data problem and survey sampling, no estimator
studied always has the smallest second-order variance even after bias correction. However,
the calibrated likelihood estimator and bias-corrected, calibrated regression estimator are
second-ordermore efficient than other bias-corrected estimators if a linearmodel holds for
the conditional expectation of the response or study variable given explanatory or auxiliary
variables.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider three different but related problems with auxiliary information. The first problem is infinite population
sampling or Monte Carlo with control variates (e.g., [14]). The data consist of independent and identically distributed (IID)
copies of (η, ξ). Themean E(ξ) is known, for example, to be 0, and E(η) is to be estimated. The second problem is to estimate
the mean of a response variable Y subject to missingness with explanatory variables X (e.g., [29]). The full data consist of IID
copies of (Y , X), but some copies of Y are missing whereas all copies of X are observed. The third problem is to estimate the
finite population mean of a study variable Y in survey sampling with auxiliary variables X (e.g., [7,46]). The values of Y are
measured only on a sample, but those of X are obtained on the entire finite population. To highlight connections, we refer
to the exercise of using auxiliary information to improve estimation as calibration.

Connections between the three problems have been previously discussed. See, for example, Meng [19] for connections
between Monte Carlo computation and survey sampling, and Kang and Schafer [16] and Lumley et al. [17] for connections
between missing-data problems (e.g., [29]) and survey calibration (e.g., [35]). However, subtle differences between these
problems have been largely ignored. Monte Carlo andmissing-data problems typically involve IID data. But survey sampling
is unique in that the finite population values are fixed and the sampling indicators are random but can be neither
independent nor identically distributed, depending on the sampling design.

Recently, Tan [44] built and exploited formal connections in the order from infinite population sampling to the missing-
data problem and then to Poisson and rejective sampling, which are two specific sampling schemes for surveys. In fact, the
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assumption of Poisson and rejective sampling is crucial to rigorously relating survey sampling to the setup of IID data, by
the independence of sampling indicators for Poisson sampling and by the conditional structure of rejective sampling. This
assumption is not restrictive because rejective sampling is as broadly applicable as other sampling schemes. Moreover, fast
algorithms have been developed for implementing rejective sampling [2,45].

Various estimators, called regression and likelihood estimators [37,38,41], can be transferred between the three
problems. For the missing-data problem and survey sampling, there are two types of such estimators. The non-calibrated
estimators are adopted from infinite population sampling, whereas the calibrated estimators are derived as modifications
of the non-calibrated ones to achieve calibration on X [38,41]. Calibration on X implies double robustness against
misspecification of the propensity score [31] or that of the linear model of Y given X in the missing-data problem, and
is a basic requirement for calibration estimation [7] in survey sampling.

The first-order asymptotic properties of regression and likelihood estimators are closely connected from one problem to
another. For infinite population sampling and themissing-data problem, the regression and likelihood estimators are known
to be first-order efficient among estimators using fixed auxiliary information [37,38,41]. For Poisson and rejective sampling,
Tan [44] showed that these estimators are first-order efficient in a similar sense: they are first-order asymptotically as
efficient as an optimal regression estimator with fixed auxiliary variables [10,20,26].

As seen from the preceding discussion, for each of the three problems, the regression and likelihood estimators are
first-order as efficient as each other. Therefore, it is interesting to compare these estimators in higher-order asymptotic
properties. For infinite population sampling, the general results of Newey and Smith [21] can be used to show that the
likelihood estimator is second-order unbiased but the regression estimator is not, and the likelihood estimator is second-
order more efficient than the bias-corrected, regression estimator. The advantage of the likelihood estimator might be
understood by the fact that it is literally a maximum nonparametric likelihood estimator [11,37].

The missing-data problem and survey sampling are more complicated than infinite population sampling. There are
two likelihood estimators, calibrated and non-calibrated, based on modifications of the usual, nonparametric likelihood.
Neither of them is strictly a maximum nonparametric likelihood estimator. In fact, likelihood inference is associated with
fundamental difficulties formissing-data problems [28] and survey sampling [27]. There seems to be no clear intuition about
how the likelihood estimators are compared with each other andwith the regression estimators in higher-order asymptotic
properties.

We study second-order asymptotic theory to address the foregoing questions. For themissing-data problem and Poisson
and rejective sampling, a summary of our findings is as follows. The likelihood estimators are second-order unbiased but the
regression estimators are not. No estimator studied always has the smallest second-order variance even after bias correction.
However, the calibrated likelihood estimator and the bias-corrected, calibrated regression estimator are second-order more
efficient than other bias-corrected estimators if the linear model of Y given X holds. In this sense, these two estimators can
be said to be locally second-order efficient.

For the rest of the article, Sections 2–4 treat infinite population sampling, missing-data problems, and survey sampling
and Section 5 provides concluding remarks. All proofs are collected as Appendix in the Supplementary Material, which can
be found online at http://dx.doi.org/10.1016/j.jmva.2014.07.003.

2. Infinite population sampling

2.1. Estimators

Consider infinite population sampling, that is, the setting where independent observations are obtained from a common
distribution. Suppose that (η1, ξ1), . . . , (ηN , ξN) are IID copies of (η, ξ), where η is a random variable and ξ is a random
vector with E(ξ) = 0. The objective is to estimate α = E(η), taking advantage of the fact that E(ξ) = 0 to achieve variance
reduction over the basic estimator Ẽ(η) = N−1 N

i=1 ηi. Throughout Sections 2–3, Ẽ(·) denotes the sample average.
An important example is known as the method of control variates in Monte Carlo computation (e.g., [14]). Each

component of ξ is called a control variate. Such variates are often constructed by exploiting specific features of individual
Monte Carlo problems.

For regularity conditions, assume that

E(η2) < ∞, E(∥ξ∥2) < ∞, V is nonsingular, (1)

where ∥ξ∥ denotes the usual norm (ξ Tξ)1/2 and V = E(ξξ T).
There are various estimators of α which admit a first-order asymptotic expansion

Ẽ(η)− βTẼ(ξ)+ op(N−1/2), (2)

where β = V−1E(ξη). The first-order variance N−1var(η − βTξ) is the minimum variance of unbiased estimators Ẽ(η) −

bTẼ(ξ) for b a vector of arbitrary constants and in fact the semiparametric variance bound in the model characterized by
E(ξ) = 0 [1, Section 6.2]. The classical method of estimation is to replace β by a consistent estimator, for example,

β̂ = Ẽ−1(ξξ T)Ẽ(ξη), β̂c = Ẽ−1
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