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a b s t r a c t

As in the multivariate setting, the class of elliptical distributions on separable Hilbert
spaces serves as an important vehicle and reference point for the development and
evaluation of robust methods in functional data analysis. In this paper, we present a simple
characterization of elliptical distributions on separable Hilbert spaces, namely we show
that the class of elliptical distributions in the infinite-dimensional case is equivalent to the
class of scale mixtures of Gaussian distributions on the space. Using this characterization,
we establish a stochastic optimality property for the principal component subspaces
associatedwith an elliptically distributed random element, which holds evenwhen second
moments do not exist. In addition, when secondmoments exist, we establish an optimality
property regarding unitarily invariant norms of the residuals covariance operator.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

When considering finite-dimensional random vectors, a natural and commonly used generalization of the family of
multivariate normal distributions is given by the class of elliptical distributions. This class allows for heavy tail models while
preserving many of the attractive properties of the multivariate normal model, such as regression being linear, as discussed
for example in [8,15,28,35]. Multivariate elliptical distributions include the t-distributions, the symmetric generalized
hyperbolic distribution, themultivariate Box–Tiao or power exponential family distributions and the sub-Gaussian α-stable
distributions, among others. From a practical point of view, Frahm [15] has argued that the class of heavy tailed elliptical
distributions offers a good alternative for modeling financial data in which the Gaussian assumption may not be reliable.
Multivariate elliptical models have also been considered extensively within the area of robust statistics as a starting point
for the development of the M-estimates of multivariate location and scatter, see e.g. [26], and also as a class of models
under which the asymptotic behavior and the influence functions of robust multivariate methods, such as robust principal
components, can be evaluated and judged. (See, for instance, [18,20,27].)

In many areas of statistics, the collected data are more naturally represented as functions rather than finite-dimensional
numerical vectors, as argued e.g. in [32]. Simplifying the functional model by discretizing the observations as sequences
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of numbers can often fail to capture some of its important characteristics, such as the smoothness and continuity of the
underlying functions. For this reason, in the last decades different methods have been proposed to handle this type of
‘‘functional’’ data, which can be viewed as instances of random elements taking values in a space of functions such as L2(I),
with I ⊂ R a finite interval. A more general and inclusive framework is to view the observations as elements in a separable
Hilbert space H, which is not necessarily finite-dimensional.

The notion of principal components analysis, which is a fundamental concept inmultivariate statistics, has been extended
to the functional data setting and is commonly referred to as FPCA or functional principal components analysis. The first
few principal components are typically used to explore the main characteristics of the data within a reduced dimensional
space. In particular, exploring this lower dimensional principal components space can be useful for detecting atypical
observations or outliers in the data set. The principal components subspace has the well known property that the first q
principal components associated with the distribution of a random element with finite second moment provide the best
q-dimensional linear approximation to the random element in terms of mean squared error. These linear approximations
also minimize unitarily invariant norms of the covariance matrix of the residuals, in the finite-dimensional setting.

As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces can serve as an important
vehicle and reference point for the development and evaluation of robust methods in functional data analysis. In addition,
they allow for the development of FPCA even if the random elements do not possess second moments. An extension of the
class of elliptical distributions to separable Hilbert spaces is given in the relatively recent paper by Bali and Boente [2], while
the Fisher-consistency of some robust estimates of principal directions for this class of elliptical distributions is established
in [4]. The main purpose of the present short paper is two-fold. First, in Section 2, we present a simple characterization of
elliptical distributions on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite-
dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space, unless the random
element is essentially finite-dimensional. Second,we then use this representation in Section 3.1 to establish a stochastic best
lower-dimensional approximation for elliptically distributed random elements and an optimality property for the scatter
operator of the associated residuals. That is, we derive two optimality properties for the eigenfunctions associated with the
largest eigenvalues of the scatter operator that hold even when second moments do not exist and which recover the same
best lower dimensional approximation properties mentioned above when second moments do exist.

In Section 3.2 we extend another known optimality property of principal components from Euclidean spaces to general
Hilbert spaces. This optimality property holds not only for elliptical distributions, but for any distribution with finite second
moments. As in the finite-dimensional case, when secondmoments exist ameasure of closeness between a random element
X and a predictor is the norm of the residuals covariance operator. Although many operator norms can be defined, in
the principal components setting a reasonable requirement is that the operator norm be unitarily invariant. Under this
assumption, we show that the optimal linear predictors are those obtained through the linear space spanned by the first
q principal components. In Section 4 we use the theory developed in this paper to show that the spherical principal
components of Locantore et al. [25] and Gervini [16] are Fisher consistent for elliptically distributed random elements. This
result extends previous results obtained for random elements with a finite Karhunen–Loève expansion. Somemathematical
concepts and proofs are presented in the Appendix.

2. Elliptical distributions over Hilbert spaces

There are a number of ways to define the class of elliptical distributions in the multivariate setting. An attractive con-
structive definition is to define them as the class of distributions generated by applying affine transformations to the class
of spherical distributions. The properties of elliptical distributions then follow readily from the simpler class of spherical
distributions.

Recall that a random vector Z ∈ Rd is said to have a d-dimensional spherical distribution if its distribution is invariant
under orthogonal transformations, i.e., if QZ ∼ Z for any d × d orthogonal matrix Q. The classic example of a spherical
distribution is themultivariate standard normal distribution. In general, if Z has a spherical distribution in Rd then R = ∥Z∥d
and U = Z/∥Z∥d are independent with U having a uniform distribution on the d-dimensional unit sphere. Here ∥ · ∥d refers
to the Euclidean norm in Rd. If Z is also absolutely continuous in Rd, then it has a density of the form f (z) = gd(ztz) for
some function gd(s) ≥ 0, i.e., it has spherical contours. The marginal density of a subset of the components of Z also has
spherical contours, with the relationship between gd and the k-dimensional density generator gk, for k < d being somewhat
complicated. It turns out to be more convenient to denote a spherical distribution by its characteristic function. In general,
the characteristic function of a spherically distributedZ ∈ Rd is of the formψZ(td) = ϕ(ttdtd) for td ∈ Rd, and any distribution
in Rd having a characteristic function of this form is a spherical distribution. Consequently, we express Z ∼ Sd(ϕ). This
notation is convenient since, for Zt

= (Zt
1, Z

t
2) with Z1 ∈ Rk, the marginal Z1 is such that Z1 ∼ Sk(ϕ). More generally, for

any k × d matrix Qk such that Qt
kQk = I , we have QkZ ∼ Sk(ϕ). Note that if ϕ(ttdtd) is a valid characteristic function in Rd

then ϕ(ttktk), where tk = (t1, . . . , tk), is also a valid characteristic function in Rk for any k < d. For some families of spherical
distributions defined across different dimensions, such as themultivariate power exponential family considered by Kuwana
and Kariya [24], the function ϕmay depend upon the dimension d. In such cases, themarginal distributions are not elements
of the same family.

As already noted, the elliptical distributions in Rd correspond to those distributions arising from affine transformations
of spherically distributed random vectors in Rd. For a d × d matrix B and a vector µ ∈ Rd, the distribution of X = BZ + µ
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