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a b s t r a c t

In this paper, we establish the semiparametric efficient bound for the heteroscedastic par-
tially linear single-indexmodelwith responsesmissing at random, and develop an efficient
estimating equation method. By solving the estimating equation, we obtain estimators for
the parameter vectors in the linear part and the single index part simultaneously. The esti-
mators are asymptotically semiparametrically efficientwhen the propensity score function
is specified correctly. It should be noted that the inverse probability weighted efficient es-
timating equation cannot be obtained directly from the full data efficient estimating equa-
tion by the inverse probability weighted approach. We establish the estimating equation
by deriving the observed data efficient score function. Some simulation studies and a real
data application were conducted to evaluate and illustrate the proposed methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

How to avoid ‘‘curse of dimensionality’’ is always a challenging problem in the high dimensional data analysis. Some
dimension reduction methods and variable selection methods are suggested to overcome these difficulties. Another way
to avoid ‘‘curse of dimensionality’’ is to consider dimension reduction models, such as the additive model [1,16], partially
linear model [18,23], single-index model [14], generalized partially linear single-index models [2], extended partially linear
single-indexmodels [37], semiparametric varying-coefficient partially linearmodel [11]. Partially linear single-indexmodel
is an important alternative to the classical linear model by putting a nonparametric component into the model. That is,

Y = θ⊤Z + g(X⊤β)+ ε, (1.1)
where Y is a scalar response variate, (X, Z) ∈ Rp

× Rq, g(·) is an unknown univariate link function, ε is random error with
E(ε|X, Z) = 0 and var(ε|X, Z) = σ 2(X, Z). (β, θ) is an unknown vector in Rp

× Rq with ∥β∥ = 1 (where ∥ · ∥ denotes the
Euclidean metric). The true value of (β, θ) is (β0, θ0).

Model (1.1) has been paid considerable attention in recent years. See, e.g., [2,40,36,41,35,22]. Carroll et al. [2] develop
a quasi-likelihood method to estimate an unknown link function and unknown parameters. Yu and Ruppert [40] propose
the penalized spline estimation procedure. Xia and Härdle [36] extend the method of Härdle et al. [14] for a single index
model to model (1.1), and develop theminimum average variance estimation (MAVE) method.Wang et al. [35] consider the
estimating problem and discuss the efficiency of the estimators. Wang et al. [35] compare the asymptotic covariance of the
proposed estimators with that of Carroll et al. [2], and show that their estimators are more efficient. Liang et al. [22] develop
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the profile least-squares approach to define efficient parameter estimators. But, they consider the special case of σ 2(x, z) =

σ 2, where σ 2 is a constant. This method, however, cannot be extended to the case of the heteroscedastic variance directly.
Model (1.1) reduces to the partial linear models when p = 1 and β = 1. For the partially linear models, Härdle et al.

[15] propose a direct weighted extension of the estimator given in [21], with the weights being inversely proportional to
the variances. However, as Ma et al. [25] point out, this estimator is still not efficient. For defining efficient estimator, Ma
et al. [25] consider the heteroscedastic partially linear models, and utilize a weighted estimating equation method to define
an efficient semiparametric estimator for the parameter vector in the linear part. This motivates us to develop efficient es-
timating equation method to define asymptotically efficient semiparametric estimators of the global parameter vectors β
and θ for the heteroscedastic partially linear single-index model (1.1), and consider a more complex case where responses
are missing. The estimating equations for the heteroscedastic partially linear models due to Ma et al. [25] cannot be applied
to model (1.1) directly since model (1.1) concerns a single-index term and we consider missing response problems. Clearly,
somemore complex techniques for our estimating problem are needed. In the absence of missing response, semiparametric
efficiency problem for other models has been studied extensively in literatures, such as [28,32,12,5,3,4,39], and so on.

In practice, response variable may be missing, by design or by happenstance. For example, in the well known two-stage
sampling scheme, it is not feasible to obtain enough observations of Y perhaps because it is expensive to obtain more Y ’s,
instead onemay takemore observations on the covariates such that the information contained in covariates canmake up for
the lack of information in Y . Missing responses occur commonly in opinion polls, market research surveys, social investiga-
tions, medical studies and other disciplines. The existing methods of analyzing data with responses missing at random can
be roughly classified as parametric likelihoodmethod [24], imputationmethod [38,34,33] and inverse probability weighting
method [17,30,27]. As a form of inverse probabilityweightedmethod, Tsiatis [32] discusses the inverse probabilityweighted
complete case (IPWCC) estimator and augmented inverse probability weighted complete case (AIPWCC) estimator of para-
metric models for missing data.

We consider the missing response problems and assume that we obtain the following incomplete observations
(Yi, δi, Xi, Zi), i = 1, 2, . . . , n,

from model (1.1), where δi = 0 if Yi is missing, δi = 1 otherwise. Throughout this paper we assume that Y is missing at
random (MAR). That is,

p(δ = 1|Y , X, Z) = p(δ = 1|X, Z).
It is a commonly used as missing mechanism for statistical analysis with missing data and is reasonable in many practical
situations; see [24].

Naturally, one may consider the estimating problem by first deriving the full-data efficient score function and then use
the inverse probability weighted approach to construct an estimating equation to compute estimators. Unfortunately, this
method does not define efficient estimators. The main purpose of this article is to establish the semiparametric efficient
bound and construct an efficient estimating equation to obtain efficient estimators for heteroscedastic partially linear single-
indexmodel with responsesmissing at random. Ourmethod is to find the optimal element in the orthogonal complement of
the nuisance tangent space to obtain the observed data efficient score function such that the semiparametric bound can be
calculated, and then obtain an estimated observed-data efficient score function and use it to construct an efficient estimating
equation, from which we can define asymptotically efficient estimators of both β and θ with responses missing at random.

The rest of this article is organized as follows. In Section 2, the observed-data efficient score function is presented, and the
observed-data semiparametric efficiency bound is proposed when response variable is missing at random. In Section 3, we
construct the efficient estimating equation and establish the asymptotic properties of the proposed estimators. In Section 4,
some simulation studies are conducted to evaluate the proposed methods and a real data set is analyzed to illustrate the
proposed methods. The proofs of the asymptotic properties are presented in the Appendix.

2. Semiparametric efficiency bound

Model (1.1) concerns the parameter vectors θ and β of interest, the nuisance link function g(·), the unknown conditional
variance σ 2(X, Z), the conditional distribution of ε|X, Z and the distribution of (X, Z). For the sake of identifiability, it is
assumed that ∥β∥ = 1, where ∥ · ∥ denotes the Euclidean metric. Because ∥β∥ = 1, this means that the true value of β is a
boundary point on theunit sphere, andhence g(X⊤β)does not have a derivative at the pointβ (see [41]). For the convenience
of computing the score vector, we make the following adjustment. To use the constraint ∥β∥ = 1, we use the delete-one-
component method proposed by Yu and Ruppert [40]. Without loss of generality, we assume that the parameter vector β
has a positive component βr (otherwise, consider −β). Let β = (β1, . . . , βp)

⊤ and β(r) = (β1, . . . , βr−1, βr+1, . . . , βp)
⊤ be

a (p − 1)-dimensional vector after removing the rth component βr of β . Then, we may write
β(β(r)) = (β1, . . . , βr−1, (1 − ∥β(r)∥2)1/2, βr+1, . . . , βp)

⊤.

The true parameter β(r)0 must satisfy the constraint ∥β
(r)
0 ∥ < 1. Thus, β is infinitely differential in a neighborhood of β(r)0 ,

and the Jacobian matrix is

Jβ(r) =
∂β

∂β(r)
= (b1, . . . , bp)⊤,

where bs(1 ≤ s ≤ p, s ≠ r) is a (p − 1)-dimensional unit vector with sth component 1, and br = −(1 − ∥β(r)∥2)−1/2β(r).
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