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1. Introduction

Let us consider finite population & = {1, ..., N} as the collection of a known number N of identifiable units. Associated
with the ith unit of 2, there are p + 1 quantities: y;, X;1, ..., X, where all but y; are known, i = 1,...,N. Denote

y=WU1....yn) andX = Xy, ..., Xy)', where X; = (x;1, ..., xp),i = 1,..., N. We express the relationships among the
variables by the linear model

y=Xp+e, (1.1)

where § is a p x 1 unknown parameter vector, ¢ is an N x 1 normal random vector with mean vector 0 and covariance
matrix o2V, V is a known positive definite matrix, but the parameter o2 > 0 is unknown.

The finite population regression coefficient is denoted as Sy = (X’V~'X)~'X'V~1y. In order to predict the finite
population regression coefficient By, let us select a sample s of size n from & according to some specified sampling plan so
as to obtain information on By. Letr = &2 — s be the unobserved part of &. After the sample s has been selected, we may
reorder the elements of y such that we have the corresponding partitions of y, X and V, that is

X Vi V.
—(Ys X = (4 V= s st
=) =) -l )
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Following Bolfarine et al. [8], we can write the finite population regression coefficient By as

,BN — (X’V’IX)”X’V’1y

-1 -1 -1
sl ) ()] w0 ) 6)

Qsys + Qryr,

where
Q=G'MC"', Q=G 'DE!,
M=X—XV Vs  C=Vi—VuV Vg,
D=X —XV Wy, E=V,— VsV Vg,
and
G = MC™'X; + DE"'X,.

In the literature, a lot of predictions for the finite population regression coefficient have been given. For example, Bolfarine
and Zacks [6,7] studied Bayes and minimax prediction under square error loss function. Bolfarine et al. [8] obtained the
optimal prediction under the generalized prediction mean squared error. In their studies, the quadratic function and its
variants were usually considered as the loss functions. However, in regression analysis, we are often interested in using
an estimator which has high precision of estimation and high goodness of fit. In this situation, Zellner [16] proposed a
balanced loss function which takes account of both precision of estimation and goodness of fit. Balanced loss function is a
more comprehensive and reasonable standard than quadratic loss and residual sum of squares. It has attracted considerable
attention under different setups in the literature. For more details, the readers are referred to Arashi [1], Xu and Wu [15],
Hu and Peng [10,11], and Cao [9].

Therefore, the problem of prediction in a superpopulation regression model under balanced loss function arises naturally.
Recently, Bansal and Aggarwal [2-4] have considered Bayes prediction of finite population regression coefficient under
balanced loss function. It is interesting for us to consider the optimal prediction and minimax prediction of finite population
regression coefficient in the normal populations under a balanced loss function. In next section, we will give the best
predictor in the class of all unbiased predictors. In Section 3, we will discuss the minimax predictor in the class of all
predictors. In Section 4, we will discuss the risk comparison of BUP and MP. In Section 5, we compare SPP with BUP and
MP. Concluding remarks are given in Section 6.

2. Optimal predictor

In this section, we will discuss the best unbiased prediction of finite population regression coefficient in the class of all
predictors. For every 8 € RP and o? > 0, where RP stands for the set composed of all p x 1 real vectors, we define the loss
function as

(¥s — X8(¥)' Vs (s — X8 (v5)) + (1 — 0)(8(ys) — Bn)' XV ' Xs (8(s) — B)
o2+ BIXV X B ’

where 6 € [0, 1] is a weight coefficient. The numerator of the loss function is proposed using the idea of Zellner’s balanced
loss and the theory of generalized least squares estimator. It can be seen that the best unbiased prediction under loss (2.1)
is equivalent to the best unbiased prediction under the numerator. We add to the denominator o + g'X/V,”'X, 8 in the loss
function (2.1) such that the maximum risk function of §(y;) does not rely on parameters ¢ > and 8. This make us discuss the
minimax prediction under the same loss function better.

We denote 2 by the space of all predictors §(y;) of By such that the expected value of the loss L(8(ys), By) is finite. For
every B € R’ and 6 > 0, we define the risk function of §(y;) as

R (ys), Bn) = E(L((Ys), Bn))-

If the element is finite, thus the optimality of a predictor §(ys) € 2, such as domination, admissibility, minimaxity and
so on, can be evaluated by its risk in the range spaces of the risk function. This section deals with the optimal predictor of
Bn, which is defined as follows.

0
L(8(ys), Bn) = (2.1)

Definition 2.1. An unbiased predictor §*(y;) is said to be the best unbiased predictor of By, if for any unbiased predictor

(s,
R(8*(¥s), Bn) < R(8(ys), Bn)
holds for all 8 € R? and 6% > 0.
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