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a b s t r a c t

Multi-way tensor data are prevalent inmany scientific areas such as genomics and biomed-
ical imaging. We consider a K -way tensor-normal distribution, where the precision matrix
for each way has a graphical interpretation. We develop an l1 penalized maximum likeli-
hood estimation and an efficient coordinate descent-based algorithm for model selection
and estimation in such tensor normal graphical models. When the dimensions of the ten-
sor are fixed, we drive the asymptotic distributions and oracle property for the proposed
estimates of the precision matrices. When the dimensions diverge as the sample size goes
to infinity, we present the rates of convergence of the estimates and sparsistency results.
Simulation results demonstrate that the proposed estimation procedure can lead to better
estimates of the precision matrices and better identifications of the graph structures de-
fined by the precisionmatrices than the standard Gaussian graphical models. We illustrate
the methods with an analysis of yeast gene expression data measured over different time
points and under different experimental conditions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

An increasing number of statistical and datamining problems involves analysis of data that are indexed bymore than one
way. This type of data is often called themultidimensional matrix, multi-way array or tensor [2]. Recently high-dimensional
tensor data have become prevalent in many scientific areas such as genomics, biomedical imaging, remote sensing, biblio-
metrics, chemometrics and internet. Take a two-way n × p data matrix as an example, if n samples are not independent,
their correlations should be taken into consideration in statistical modeling, which leads to a transposable matrix [1]. In
genomic experiments, gene expression data are often collected at different time points during the cell cycle process and
under varying experimental conditions. This gives rise to a 3-way tensor data [8]. In social-economics studies, export of
commodity k from country i to country j at year t [4] defines a three-way tensor data.

Statistical methods for tensor data analysis are limited. Omberg et al. [8] developed tensor higher-order singular value
decomposition for integrative analysis of DNA microarray data from different studies. Tucker and parallel factor analysis
(PARAFAC) are useful methods for tensor decomposition [5]. When modeling high dimensional tensor data, a separable co-
variancematrix structure is often assumed. Such a separable structure on the covariancematrix can dramatically reduce the
dimension of the parameter space. Consider a four-way tensor data, suppose that the dimensions arem1 = m2 = m3 = 100
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andm4 = 10. The nonseparablemodel requires a joint covariancematrix of 107
×107 entries, while the separablemodel re-

quires only three 100×100matrices andone10×10matrix for eachway. The joint covariancematrix is simply theKronecker
product of the matrices over all dimensions. The ratio of dimension between two models is almost of the order of 1010.

In this paper, we consider sparse modeling of the precision matrices of K -way tensor data, assuming a separable covari-
ance matrix structure. The corresponding precision matrices define graphical models for tensor data. In many applications,
sparsity in each of the corresponding precision matrices can be assumed to facilitate the interpretation. In addition, tensor
normality is a natural assumption for the data distribution when the data are continuous [4]. With the separability assump-
tion on the covariance matrix, the joint covariance matrix of the vectorization of the tensor can be obtained by a Kronecker
product of K covariance matrices.

When K = 2, the 2-way normal tensor data are also called matrix normal data. Yin and Li [13] discussed the sparse
model selection and estimation for the matrix normal distribution using a penalized likelihood approach with Lasso and
adaptive Lasso penalties. In their work, the dimensions for row and column can diverge to infinity when the sample size
goes to infinity. Other related works in modeling matrix-normal data include [1,16,15,12].

In this paper, we generalize the work by Yin and Li [13] to K -way tensor data and focus our work on graphical model
selection and estimation. We develop a penalized maximum likelihood estimation with an adaptive Lasso penalty. The con-
sistency and oracle property are obtained when the tensor dimensions hold fixed. In addition, we derive the rate of conver-
gence and prove sparsistency of the estimates when the dimensions diverge with sample size going to infinity. We further
show that the effective sample size for estimating the covariancematrix in eachway of the tensor is the product of the num-
ber of independent samples and the dimensions of the other K −1matrices. It is worth noting that this effective sample size
is usually very large, hence the convergence is quite fast and the high dimension is actually a bless. Our simulation study
demonstrates the high accuracy in estimating the precision matrices with small sample size N .

The rest of the paper is organized as follows. A brief summary ofmulti-way tensor data is presented in Section 2. Section 3
introduces the definition of the array normal distribution of [4] and its estimation in highdimensional settings. The convexity
and optimization of the objective function is discussed in Section 4. In Section 5, the asymptotic properties are derived both
for the case of fixed dimensions and the case of diverging dimensions when the sample size goes to infinity. A Monte Carlo
simulation study is presented in Section 6. Finally, a 3-way tensor data set on gene expressions [8] is analyzed in Section 7.

2. Multi-way tensor data structure and operations

This section presents a brief summary of multi-way array data or high order tensor data [4,2]. Tensor data are higher
order parallels of vector and matrix. Entries in a vector can be indexed by a single index set, while a matrix is indexed by
two sets (row and column). In the following presentation, we use non-bold italic letters for scalars, bold-faced lower case
letters for vectors, and bold-faced capitals for matrices and the multi-way tensor. For a matrix A, we use a(j) to denote its
j-th column, a[i] its i-th row, and A(i, j) its (i, j)-th element. Standard matrix identities and inequalities used in this paper
can be found in [9].

A K-way tensor is an arrangement of elements, which is indexed by K sets. Suppose Y is a K-way tensor with dimensions
{m1,m2, . . . ,mK }, then the total number of elements of Y ism = m1 × m2 × · · · × mK . All the elements in Y are

{y(i1,...,iK ) : ik = 1, 2, . . . ,mk; k = 1, 2, . . . , K}.

Clearly, Y is a vector when K = 1 and a matrix when K = 2. We further introduce the notation Y(···,i0k ,...)
, which is a (K − 1)-

subarray of Y. Specifically, Y(···,i0k ,...)
has the same elements as Y, except that its k-th sub-index is fixed at i0k . In other words,

all the elements in Y(···,i0k ,...)
are

{y(i1,...,i0k ,...,iK ) : ih = 1, 2, . . . ,mh; h = 1, 2, . . . , k − 1, k + 1, . . . , K}.

To analyze the properties of the K -way tensor, it is helpful to relate the tensor with vector or matrix. The vectorization
of Y is a vector of dimensionm,

vec(Y) =

y(1,1,1,...,1), y(2,1,1,...,1), . . . , y(m1,1,1,...,1),

y(1,2,1,...,1), y(2,2,1,...,1), . . . , y(m1,2,1,...,1),

. . . ,

y(1,m2,1,...,1), y(2,m2,1,...,1), . . . , y(m1,m2,1,...,1),

. . . ,

y(1,m2,m3,...,mK ), y(2,m2,m3,...,mK ), . . . , y(m1,m2,...,mK )

T
.

To be explicit, y(i1,...,iK ) is the j-th element of vec(Y) with

j =

K
k=2


(ik − 1)

k−1
l=1

ml


+ i1.

On the other hand, k-mode matrix unfolding results in a mk × (m/mk) matrix, Y(k), whose i0k-th row is [vec(Y(···,i0k ,...)
)]T

for i0k = 1, 2, . . . ,mk.
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