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1. Introduction
1.1. The curse of dimensionality in regression

From a general point of view, the goal of regression is to infer about the conditional distribution of a real-valued response
variable Y given an X-valued predictor variable X where X C RP. In the statistical framework, one usually focuses on the
estimation of the regression function

r(x) = E(Y|X =x), (1.1)

based on a sample (Xi,Y7),..., Xy, Yy) of n independent and identically distributed random variables with same
distribution P as the generic random couple (X, Y).

A major issue in regression, known as the curse of dimensionality, is basically that the rates of convergence of estimates
of the regression function are slow when the dimension p of the predictor variable X is high. For instance, if r is assumed
to be B-Holder and if 7 refers to any classical estimate (say a kernel, a nearest-neighbors or a least-squares estimate), the

mean squared error E (7(X) — r(X))2 of # converges to 0 at the rate n=2#/8+P) which gets slower as p increases. To get a
deeper understanding of the problem, one may refer to the minimax point of view. First, we recall the definition of optimal
rates of convergence in the minimax sense. Given a set D of distributions P of the random couple (X, Y), v, is said to be an
optimal rate of convergence in the minimax sense for D if it is a lower minimax rate, i.e.,

n—-+00

liminf v, 2 infsup E (F(X) — r(X))* > 0,
f Pep
where the infimum is taken over all estimates based on our sample, and if there exists an estimate 7 such that

limsup v, * supE (F(X) — r(X))2 < +o00.
n—-+4o00 PeD

Then, in a word, when D is taken as the set of all distributions P of the random couple (X, Y) for which r is g-Holder, the

optimal rate of convergence for D is v, = n~#/ZA*P) (for more details on optimal rates of convergence, we refer the reader

to [22,12,14,23]). Accordingly, there is no hope of constructing an estimate which converges at a faster rate under the only

general assumption that r is regular. Hence, the only alternative to obtain faster rates is to exploit additional information

on the regression function.

1.2. A general model for dimension reduction in regression

In practice, when such additional information is available, it is often encoded in regression models as so called structural
assumptions on the regression function. Statistical procedures based on such models are usually referred to as dimension
reduction techniques. In the recent years, much attention has been paid to dimension reduction techniques due to the
increasing complexity of the data considered in applications. Among popular models for dimension reduction in regression,
one can mention for example the single index model (see, e.g., [ 1], and the references therein), the additive regression model
or the projection pursuit model (see, e.g., Chapter 22 in [12]). Another important dimension reduction framework is called
sufficient dimension reduction. In this framework, one assumes that

E(Y|X) =E(Y|AX) and E(Y|AX =) €4, (1.2)

are satisfied for a matrix A € M,(R) of rank smaller than p, and a class § of regular functions (see, e.g., [13,18,3], and
the references therein). The motivation for studying such a model is that, provided the matrix A may be estimated, the
predictor variable X may be replaced by AX which takes its values in a lower dimensional space. Many methods have
been introduced in the literature to estimate A among which we mention average derivative estimation (ADE) [13], sliced
inverse regression (SIR) [18], principal Hessian directions (PHD) [19], sliced average variance estimation (SAVE) [7], kernel
dimension reduction (KSIR) [10] and, more recently, the optimal transformation procedure [9]. Discussions, improvements
and other relevant papers on that topic can be found in [5,11,26,6,29], and in the references therein. In the last years, little
attention has been paid to measuring the impact of the estimation of A in terms of the estimation of r. Recently, Cadre and
Dong [2] have used these methods to show that, in the context of model (1.2), one could indeed construct an estimate 7 of
the regression function such that

E (F(X) — r(X))2 = 0 (p2/@trank(a))

when § is taken as a class of Lipschitz functions.
In the present article, we tackle the problem of dimension reduction for regression by studying a model which consists
in a nonlinear extension of (1.2) and which is described as follows.

Our model—For a given class J¢ of functions h : X — RP and a given class § of regular functions g : R’ — R, we assume
that the two conditions

HEYIX)=E(Y|h(X)) and (i) E(Y|hX)=")€§, (1.3)
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