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a b s t r a c t

This paper is concerned with hierarchical data having three levels. The level 1 units are
nested in the level 2 units or subclusterswhich are themselves nested in the level 3 clusters.
The model for this data is assumed to fulfill some symmetry assumptions. The level 1 units
within each subcluster are exchangeable and a permutation of the subclusters belonging
to the same cluster leaves the model unchanged. We are interested in measuring the de-
pendence associated to clusters and subclusters respectively. Two exchangeable Kendall’s
tau are proposed as non parametric measures of these two associations and estimators for
these measures are proposed. Their asymptotic properties are then investigated under the
proposed hierarchical model for the data. These statistics are then used to estimate the
intra-class correlation coefficients for data drawn from elliptical hierarchical distributions.
Hypothesis tests for the cluster and subcluster effects based on the proposed estimators
are developed and their performances are assessed using Pitman efficiencies and a Monte
Carlo study.

© 2014 Published by Elsevier Inc.

1. Introduction

Hierarchical data structures are commonly found in many application areas of statistics especially in social sciences but
also in other fields such as economics, finance and risk management. The hierarchy arises naturally from the organization
of the data: the variable of interest is observed on units that are grouped into subclusters that are themselves grouped into
clusters. Education provides a well known example where scores are observed on students which are clustered in schools
and the schools themselves are grouped in geographical regions. In this paper, students, regions and schools are called units,
clusters and subclusters, respectively.

Statistical models for hierarchical data characterize the association within and between subclusters. Multilevel models,
also known as hierarchical or nested linearmodels, investigate the variation at different levels of the hierarchy. The standard
reference for these models is [4]; most of the models presented there are based on the normality assumption. In survey
sampling, a multistage sample design is considered in the presence of a hierarchical data structure [13, chapter 4]. In this
context, the dependence levels associated to the subclusters and to the clusters respectively, are typically of prime interest
as the precision of the statistical methods applied to these data depend on the strength of this dependence.

In the bivariate case, Kendall’s tau is a measure of association defined as the probability of concordance minus the
probability of discordance. Joe [6] defined an ordering of multivariate concordance and constructed a multivariate Kendall’s
tau; see also [2]. For clustered data, Romdhani, Rivest and Lakhal-Chaieb [12] introduced an exchangeable version of
Kendall’s tau as a measure of intra cluster association. The empirical counterpart of the latter association measure is
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computed by considering all possible pairs of bivariate observations such that the two elements of a pair come fromdifferent
clusters. The properties of the resulting estimatorwere investigated under an exchangeablemultivariate distributionmodel.

This paper considers three level hierarchical data. It proposes two association measures based on the exchangeable
Kendall’s tau. The first one, associated to the subclusters, measures the association between two units from the same
subcluster and is defined by considering pairs of bivariate vectors drawn from two subclusters coming from different
clusters. The second one is related to the clusters and measures the association between two units from the same cluster
but different subclusters. It is defined by considering pairs of bivariate vectors coming from two different clusters such that
each observation of a bivariate observation is drawn from two different subclusters. Aswill be seen in Sections 4 and 5, these
statistics allow one to perform valid inference for hierarchical data when the normality assumption is questionable.

The sampling distributions of the two association measures based on the exchangeable Kendall’s tau are investigated
under a general model for hierarchical data. These models are presented in Section 2 along with the different association
measures. In Section 3, we give estimators for the two exchangeable Kendall’s tau and investigate their asymptotic
distributions. Section 4 presents two estimators for the intra class correlation coefficients for elliptical distributions; one
is the standard moment estimator and the other is based on Kendall’s tau. Section 5 investigates tests for the cluster and
subcluster effects based on Kendall’s tau estimators proposed in Section 3. The cluster effect test’s performance is assessed
using Pitman efficiencies and a simulation study is conducted for the two tests. Section 6 provides a numerical example.
Proofs and technical details can be found in the appendices.

2. Models for nested data

2.1. A general model for three level data

Let I denote the number of clusters, ni the number of subclusters in cluster i, i = 1, . . . , I , andmij, for j = 1, . . . , ni, the
size of the jth subcluster of cluster i. Let Yijℓ, i = 1, . . . , I , j = 1, . . . , ni and ℓ = 1, . . . ,mij denotes the random variable
for the ℓth unit of the jth subcluster of cluster i. The random vector representing the data in cluster i is the Ni × 1 vector
Yi = (YT

i1, . . . , Y
T
ini

)T where Ni =
ni

j mij is the total number of observations in the ith cluster and Yij = (Yij1, . . . , Yijmij)
T

denotes the mij × 1 random vector for subcluster j of cluster i. Measurements from different clusters are assumed to be
independent.

The dependencewithin a cluster ismodeled using a family of cumulative distribution functions (cdf) {F (n)
m1,m2,...,mn(Y1, . . . ,

Yn) : Yj ∈ ℜ
mj ,


j mj = N} indexed by (n,m1, . . . ,mn). This family is assumed to satisfy the following permutability

property: let yj represent an mj × 1 vector for j = 1, . . . , n and let Pj be a permutation matrix of dimension mj × mj for
j = 1, . . . , n. Then

F (n)
m1,...,mn

(y1, . . . , yn) = F (n)
mπ(1),...,mπ(n)

(Pπ(1)yπ(1), . . . , Pπ(n)yπ(n)),

for any permutation {π(1), . . . , π(n)} of the integers {1, . . . , n}. The joint cdf is then invariant to permutations within the
subclusters and between the subclusters themselves. We assume in addition that

F (n)
m1,...,mn

(y1, . . . , yn−1, (∞, . . . ,∞)T ) = F (n−1)
m1,...,mn−1

(y1, . . . , yn−1).

The cdf of the vector Yj is given by F (1)
mj (yj) and is assumed to be closed under margins that is F (1)

mj (yj1, . . . , yj,mj−1, ∞) =

Fmj−1(yj1, . . . , yj,mj−1). In the notation of [8], the cdf F (n)
m1,...,mn is h-extendible.

These assumptions have several implications. They imply that all the variables Yijℓ have the same marginal cdf F(y) =

F (1)
1 (y). The dependence between two units of the same subcluster is characterized by a common bivariate cdf given by
Fs(y1, y2) = F (1)

2 ((y1, y2)T ) while the common bivariate cdf of two units from two different subclusters of a cluster is
Fc(y1, y2) = F (2)

1,1(y1, y2). The indices c and s refer to the clusters and the subclusters levels respectively. Two special cases
are of interest. If the N random variables of a cluster are exchangeable, then there are no subcluster effect and Fc(y1, y2) =

Fs(y1, y2). It may also happen that the subclusters within a cluster are independent; this implies Fc(y1, y2) = F(y1)F(y2).
Examples of families of cdf F (ni)

mi1,...,mini
satisfying these conditions are presented in the next two subsections.

2.2. The standard normal and elliptical distributions for hierarchical data

The standard normal random effect model for hierarchical data writes

Yijℓ = µ + ai + bj(i) + ϵijℓ, i = 1, . . . , I, j = 1, . . . , ni, ℓ = 1, . . . ,mij (1)

where µ is the overall mean, ai, bj(i) and ϵijℓ are independent normal random variables with respective variances σ 2
a , σ

2
b and

σ 2. A positive value of σ 2
a induces dependence between subclusters of the same cluster. A positive value of σ 2

b makes the
dependence between units of the same subcluster stronger than the dependence between those coming from two different
subclusters of the same cluster. The intra cluster correlations associated to clusters and to subclusters are then respectively
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