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a b s t r a c t

In this paper, we consider a flexible class of semiparametric varying-coefficient mean
residual lifetime (MRL) models that depended on an exposure variable where some effects
may be functions of the exposure variables and some may be constants. We develop
three-step estimation procedures to estimate parametric and nonparametric parts in
the semiparametric varying-coefficient MRL model under the right censoring. We first
establish a local estimating equation with inverse probability of censoring weighting
(IPCW) approach, and estimate parametric and nonparametric parts simultaneously. In the
second step, substituting the nonparametric estimator into estimating equations, we can
obtain the global parametric estimating equation to refine the estimators of the parametric
part. The asymptotic normality of the parametric estimator is established, meanwhile
it has been shown that the estimators achieve the

√
n convergence rate under some

smoothed conditions. In the third step, substituting the refined parametric estimator into
the local estimating equations, we can obtain updated local nonparametric estimating
equations to estimate the nonparametric part, and show that the asymptotic normality
of nonparametric estimator is still true. Some numerical simulations are conducted to
illustrate performance of the proposed methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The MRL function of a subject is defined as the expected remaining (residual) lifetime of the subject, when the subject
has survived up to a given time point. TheMRL function can play a very useful role in many fields of applied sciences such as
biomedical studies, reliability models, actuarial sciences and economics, where the goal is often to characterize the residual
life expectancy.

Inmany fields of application, we are interested in the remaining life expectancy rather than the probability of immediate
failure or the distribution of a failure time. For example, a cancer patient may care much more on how long he/she can
survive from the time of diagnosis. For another example, an insurance company would be interested in the mean residual
life of its customers. Sometimes, the mean residual life function can serve as a more useful tool than the hazard function
in applied sciences, because the mean residual life function has a direct interpretation in terms of average behavior. For
example, patients in a clinical trial might be more interested to know how many more years they are expected to survive
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given that they began a treatment at a certain time ago as compared to their risk of instantaneous dying given that they
have started the treatment at a given time.

There are many authors to studymean residual life model in the literature. Bickel et al. [1], Rojo and Ghebremichael [23],
Oakes and Dasu [20] and Maguluri and Zhang [18] proposed some estimating methods of MRL function with complete
data. Chen et al. [10] and Chen and Cheng [8] focused on proportional mean residual life models with censored data. A class
of additive mean residual life models were studied in [9]. Recently [26] studied a family of general transformation models
which includes many common models, such as additive model, proportional mean residual model as special cases. Sun
et al. [24] consider a time varying coefficient model of the mean residual life under censored data. Chan et al. [7] study the
proportional mean residual life model for right-censored length-bias data by modified partial likelihood method. However,
no work has been done to extend these methods to the semiparametric varying-coefficient MRL models with an exposure
variable for censored data.

The varying coefficient model has gained considerable interest because it is a simple but useful extension of classical
generalized linear model since pioneering work by Hastie and Tibshirani [14]. It is easy to model dynamical systems that
led to applications in areas including nonparametric generalized regression [3,4], functional data modeling [22], time
series analysis [16,3,4,2], longitudinal data analysis [15,12,13], and survival analysis [11,5] and nonparametric quantile
regression [6].

We propose a robust inverse probability weight to adjust the bias induced by the censored data that can be used to
estimate parameters and varying coefficients in the semiparametric varying coefficient function model with a specific link
function. Moreover, we allow the inverse probability weight dependent on covariates which is more realistic. To improve
the efficiency of estimators, we develop a three-stage estimating procedure using local linear regression technique and
establish the asymptotic normality of proposed estimators for both the parametric and non-parametric components. The
first step, we establish local estimating equations with inverse probability of censoring weighting (IPCW) approach, and
estimate parametric and nonparametric parts simultaneously. The second step, substituting the nonparametric estimator
into estimating equations, we can obtain global parametric estimating equations to refine the estimator of the parametric
part. The asymptotic normality of the parametric estimator is established, it is to show that the estimators achieve the

√
n

convergence rate under some smoothed conditions. The third step, substituting the refined parametric estimator into local
estimating equations, we can obtain updated the local nonparametric estimating equations to estimate the nonparametric
part. The three-stage procedure not only gives consistent estimates of the coefficient functions and parameters but also
allows us to improve the efficiency of estimator of the parameters. It is easy to show that nonparametric estimators have
the asymptotic normality with the nonparametric convergence rate

√
nh and parameter estimators converge to normality

with root of n as the usual convergence rates.
The rest of this paper is organized as follows. In the next section, by using method of estimating equation and IPCW

approach, we derive estimation procedures both the nonparametric and parametric components of themodel, and establish
three estimating equations. Section 3 studies the asymptotic properties of the resulting estimators. Section 4 reports results
from simulation studies conducted for evaluating the proposed methods.

2. Models

Let T be a positive valued random variable that represents the lifetime of a subject on a probability space (Ω, F , P)
and has a finite expectation. The mean residual life (MRL) function of a survival time T , denoted by m(t), is the expected
remaining lifetime given survival up to time t . That is,

m(t) ≡ E[T − t|T > t] =


∞

t

S(µ)

S(t)
dµ,

where S(t) = Pr(T > t) is the survival function and 0/0 ≡ 0. The relation of S(·) andm(·) is given by the inversion formula
as

S(t) = 1 − F(t) =
m(0)
m(t)

exp

−

 t

0

1
m(µ)

dµ


.

Fromm(t) and S(t) it follows that m(·) uniquely determines S(·) and vice versa.
To assess the effects of covariates on the mean residual life, Oakes and Dasu [20] proposed the proportional, and takes

the form

m(t|Z) = m0(t) exp(βTZ), (1)

where m(t|Z) denotes the MRL function corresponding to a p-dimensional covariate vector Z , m0(t) is some unknown
baseline MRL function and β is a vector of unknown regression parameters. Maguluri and Zhang [18] derived estimation
procedures without censoring time. An additive mean residual life model was proposed by Chen and Cheng [9]. More
recently, a class of transformed MRL models were proposed [26] which take the form

m(t|Z) = g

m0(t) + βTZ


, (2)
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