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a b s t r a c t

In this paper, we investigate the empirical likelihood inferences of varying coefficient
errors-in-variables models with longitudinal data. The naive empirical log-likelihood
ratios for the time-varying coefficient function based on the global and local variance
structures are introduced. The correspondingmaximum empirical likelihood estimators of
the time-varying coefficients are derived, and their asymptotic properties are established.
Wilks’ phenomenon of the naive empirical log-likelihood ratio, which ignores the within
subject correlation, is proven through the employment of undersmoothing. To avoid the
undersmoothing,we recommend a residual-adjust empirical log-likelihood ratio and prove
that its asymptotic distribution is standard chi-squared. Thus, this result can be used to
construct the confidence regions of the time-varying coefficients. We also establish the
asymptotic distribution theory for the corresponding residual-adjust maximum empirical
likelihood estimator and find it to be unbiased even when an optimal bandwidth is used.
Furthermore, we consider the construction of the pointwise confidence interval for a
component of the time-varying coefficients and provide the simulation studies to assess
the finite sample performance, while we conduct a real example to illustrate the proposed
method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Varying coefficientmodels are oftenused as extensions of classical linearmodels (e.g. [23]: 245). Their appeals are that the
modelling bias can be significantly reduced and the ‘‘curse of dimensionality’’ can also be avoided. Thesemodels have gained
considerable attention due to their various applications inmany areas, such as biomedical study, finance, econometrics, and
environmental study. The estimation for the coefficient functions has been extensively discussed in the literatures, including
the smoothing spline method [6], the locally weighted polynomial method [7], the two-step estimation procedure [4], and
the basis function approximations [9].

Varying coefficient models are particularly appealing in longitudinal studies because they allow us to determine the
extent to which covariates affect responses over time. For longitudinal data, Hoover et al. [7], considered the following
varying coefficient model:

Yi(tij) = XT
i (tij)β(tij) + εi(tij), i = 1, . . . , n, j = 1, . . . , ni, (1)
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where, for all t ∈ R, Xi(t) = (Xi1(t), . . . , Xik(t))T are real-valued covariates at time t , β(t) = (β1(t), . . . , βk(t))T , βr(t) are
smoothing functions of t for all r = 1, . . . , k, εi(t) (i = 1, . . . , n) are the stochastic processes with mean zero, and εi(t) and
Xi(t) are independent. Throughout the remainder of this article, we assume that the designs {tij, i = 1, . . . , n, j = 1, . . . , ni}

are independent and identically distributed according to an underlying density f (·), with respect to the Lebesgue measure.
Hoover et al. [7] derived two nonparametric estimators of β(t) using a class of smoothing splines and the locally weighted
polynomial method. Wu et al. [30] obtained a kernel estimator of β(t) by minimising a local least-squares criterion, and
established the asymptotic normality. They further used the asymptotic distribution to develop approximate pointwise and
simultaneous confidence bands forβ(t). Huang et al. [10] approximated each coefficient function by a polynomial spline and
employed the least squares method to estimate the coefficient functions. Xue and Zhu [33] investigated the local empirical
likelihood-based inference for β(t), and proposed the naive, mean-corrected, and residual-adjusted empirical likelihood
ratios. Tang and Cheng [25] discussed M-estimation and B-spline approximation for β(t), and derived the asymptotic
distributes of M-estimators.

For model (1), the covariates Xi(tij) are not always observable without error. If Xi(tij) is measured with error, instead of
observing Xi(tij), we observe

Wi(tij) = Xi(tij) + Ui(tij), (2)

where U is an independent error with mean zero and covariance matrix Σu. If some elements of X are measured without
error, the corresponding elements of U and related variance components inΣu are set to zero. The varying coefficient model
with measurement error is usually called the varying coefficient errors-in-variables (EV) model. It is will known that there
exists the issue of identifiability associated with the error-in-variables models (see Fuller [5]). To deal with this problem,
we need extra information that Σu is known or can be estimated. When Σu is unknown, the idea is to make replicate
observations, enabling us to estimate Σu (see Remark 3). A careful study of such a model is often needed. You et al. [38]
and Li and Greene [16] used the locally corrected method to estimate β(t). Wang and Zhang [29] considered varying
coefficient EV models with surrogate data and validation sampling. The asymptotic normality obtained by You et al. [38]
or Li and Greene [16] can be used to construct the confidence regions for β(t). Zhang et al. [39] studied the estimation
and testing problems of partially linear varying-coefficient EV models under additional restricted conditions. However,
for longitudinal data, an asymptotic normal distribution would involve bias. In addition, the asymptotic variance of the
estimator has a very complex structure. To avoid taking these issues into account, we recommend using the empirical
likelihood method to construct the confidence regions of β(t). Xue and Zhu [34] and Zhu and Xue [42] investigated the
empirical likelihood confidence regions of the parameters in the single-index model and the partially linear single-index
model, respectively. Xue and Zhu [35] investigated the issue of estimation and confidence region construction for the
partially linear model with longitudinal data. Cui and Chen [2] studied the empirical likelihood inference for the EVmodels.
Zhao and Xue [40] investigated empirical likelihood inferences for semiparametric varying-coefficient partially linear EV
models. Undermissing data, Xue [31,32] studied the nonparametric regressionmodel and the linearmodel. The other related
works include Wang and Rao [28], You et al. [36], Stute et al. [24], Li et al. [14], Huang and Zhang [11], Hua et al. [8], Wang
et al. [26], You and Zhou [37], Zhou and Liang [41], Li et al. [15], and Li et al. [13], among others.

In this article, we investigate estimation and confidence region construction issues using the empirical likelihood
approach. First, we construct a naive empirical log-likelihood ratio (ELR) forβ(t) and show that its asymptotic distribution is
standard chi-squared when undersmoothing is employed. Second, we define the maximum empirical likelihood estimator
(MELE) and investigate its asymptotic properties. Third, we provide a modified ELR called the residual-adjusted ELR. The
residual-adjusted ELR is asymptotically standard chi-squared. The confidence regions for β(t) can be constructed through
a standard chi-squared approximation. The corresponding residual-adjust MELE is obtained and the asymptotic normality
is established. We also consider the construction of the pointwise confidence band for a component of the time-varying
coefficients.

Our method offers the following improvements over existing methods. First, to incorporate serial correction into ELR
functions, we introduce the naive ELRs, based on the global and local variance structures. Although Xue and Zhu [33]
investigated model (1), they did not include errors in the covariates. When X(t) is measured with the additive error,
the method proposed by Xue and Zhu [33] leads to biased estimators. In addition, they did not discuss the correlation
with longitudinal data. Second, the proposed method can not only attenuate the effect of bias and measurement errors,
but also avoid undersmoothing. As a result of our bias and measurement error correction, the proposed ELR for β(t) is
asymptotically standard chi-squared, undersmoothing is avoided, and the optimal bandwidth can be used. Third, theMELEs,
β̂EL(t) and β̂RAEL(t), are derived by the naive ELR function and the residual-adjusted ELR function, and the asymptotic
properties are established. Note that the asymptotic normal distribution of the naive MELE, β̂EL(t), involves bias without
undersmoothing. In contrast, the residual-adjusted MELE, β̂RAEL(t), is unbiased if an optimal bandwidth is used. Xue and
Zhu [33] only investigated the naive MELE, they did not consider the residual-adjusted MELE for varying coefficient models
with longitudinal data. It is worth mentioning that the residual-adjusted MELE is also unbiased without undersmoothing
when the covariates are measured without error; that is, Σu is set to the zero matrix.

This article is organised as follows. In Section 2, a naive ELR function is defined. We also define the MELE and investigate
its asymptotic properties. In Section 3, a residual-adjusted ELR and the corresponding residual-adjust MELE are proposed,
and their asymptotic properties are derived. In Section 4, we discuss the pointwise confidence interval for a component of
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