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a b s t r a c t

Analysing the extremes of multi-dimensional data is a difficult task for many reasons,
e.g. the wide range of extremal dependence structures and the scarcity of the data. Some
popular approaches that account for various extremal dependence types are based on
asymptotically motivated models so that there is a probabilistic underpinning basis for
extrapolating beyond observed levels. Among these efforts, Heffernan and Tawn developed
a methodology for modelling the distribution of a d-dimensional variable when at least
one of its components is extreme. Their approach is based on a series (i = 1, . . . , d) of
conditional distributions, in which the distribution of the rest of the vector is modelled
given that the ith component is large. This model captures a wide range of dependence
structures and is applicable to cases of large d. However their model suffers from a lack
of self-consistency between these conditional distributions and so does not uniquely
determine probabilities when more than one component is large. This paper looks at
these unsolved issues and makes proposals which aim to improve the efficiency of the
Heffernan–Tawn model in practice. Tests based on simulated and financial data suggest
that the proposed estimationmethod increases the self-consistency and reduces the RMSE
of the estimated coefficient of tail dependence.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Extreme value theory is a collection of theory and methodology for studying rare events characterized by small
probabilities of occurrence. Its application ranges fromenvironmental risk assessment, financial riskmanagement, industrial
safety regulation, to pharmaceutical studies. Multivariate extreme value theory is a generalization of the univariate case
where multi-dimensional data are involved. Pioneering research efforts in this area include de Haan and Resnick [5],
Pickands [17], see [19,9] for reviews. A popularmethod for studyingmultivariate extremes is to use threshold-basedmodels,
see for example [3,4,11,21]. These models however make implicit assumptions about the extremal dependence between
components, a property termed asymptotic dependence which implies that there is a positive probability that the large
values for each component can occur simultaneously.

More recently theory has been developed based on hidden regular variation, summarized in [20], which overcomes this
problem of implicit assumptions, see for example [14,15,6,18,8]. But their focus was on the region of the joint tail where
all components are extreme simultaneously. Later Heffernan and Tawn [10] proposed a conditional approach for modelling
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multivariate extremeswhere an extreme event is such that at least one component is large. Theirmodel breaks the limitation
to the joint tail area, captures amuchbroader range of dependence structures thanhadpreviously been studied, andprovides
a parsimonious model in higher dimensional problems. This paper extends the Heffernan–Tawnmodel and is motivated by
some unresolved issues within the original Heffernan and Tawn [10] paper, namely the self-consistency issue and the form
of the residual distribution.

Like in the original Heffernan and Tawn [10] paper, we assume the marginal distribution of the multivariate random
variable is dealt with separately from the dependence structure. However we replace the standard Gumbel marginal
distribution with the standard Laplace distribution as suggested in [13] in order to allow the flexibility for parsimonious
modelling of negative dependence. In a bivariate case of the Heffernan–Tawn model, if Yj and Yi are margins of variables
with standard Laplace distribution, then the pairwise dependence is modelled by assuming that the following limiting
distribution holds,

lim
u→∞

P


Yj − αj|iYi

Y
βj|i
i

< z, Yi − u > y

 Yi > u


= Gj|i(z) exp(−y), (1.1)

for all y > 0, where −1 ≤ αj|i ≤ 1, βj|i ≤ 1 are selected so that Gj|i is a non-degenerate distribution. The original
Heffernan–Tawnmodel assumes the limiting condition in Eq. (1.1) still holdswhen u is large but finite, but does not conclude
a parametric form for the limiting distribution Gj|i. So an aim of this paper is to propose a general class of distribution Gj|i
which may be used for statistical inferences.

In the original paper the conditional structure of (1.1) is imposed on both directions (Yj|Yi and Yi|Yj) separately, i.e. given
αj|i currently no constraints are imposed onαi|j. A problemarising naturally from this approach iswhichmargin dowe choose
to condition on and if not selecting one formwhat additional structure is required on the model to impose self-consistency.
The fundamental issue is the lack of self-consistent results when a statistic is estimated conditioning on different margins.
For examplewhenwe consider the joint tail probability of Yi and Yj both being larger than a big value v, we have the following
identities

P
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
≡ P


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
P (Yi > v) ≡ P


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
P

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
.

However when estimating the two conditional probabilities using the original Heffernan–Tawn model separately, it is not
guaranteed that the probabilities will be equal and thus we have different estimates for the joint survival probability.

To illustrate this problem,we consider data on daily returns of a pair of stockmarket indices, S&P 500 in the US andNikkei
225 in Japan, over the period from January 2002 to March 2010. Let X1 and X2 denote the two returns respectively, we first
remove the volatility effect by fitting a univariate GARCH model to either margin and taking the standardized returns X̃1

and X̃2 (see Appendix A for more details). Then we perform a probability integral transform1 on X̃1, X̃2 and transform them
into standard Laplace distributed random variables Y1 and Y2. The dashed lines in Fig. 1 are the chosen threshold Y1 = u and
Y2 = uwith u equal to the 90-th quantile of the standard Laplace distribution.We are interested in eventswith bothmargins
exceeding the threshold u, i.e. Y1 > u and Y2 > u, which are represented by the darker dots in Fig. 1. Since this region lies
above (and to the right of) both threshold lines, inference can be made about this area using the standard Heffernan–Tawn
model, by conditioning on Y1 > u or on Y2 > u. For the model to be self-consistent the probability density for events in the
joint tail must be identical regardless of the choice of conditioning margin. This therefore defines some implicit constraints
on the parameters (αj|i, βj|i), the conditional distribution of Yj|Yi > u as well as their respective counterparts, i.e. with i and
j interchanged.

We generalize the threshold choice u to the p-th quantile Q L(p) of the standard Laplace distribution and define the
conditional tail probability χ(p) = P (Y1 > Q L(p), Y2 > Q L(p)) / (1 − p). The self-consistency in this situation is therefore
represented by

χ(p) ≡ P (Y1 > Q L(p)|Y2 > Q L(p)) ≡ P (Y2 > Q L(p)|Y1 > Q L(p)) ∀ p ∈ (0, 1).

The conditional tail probability χ(p) can be estimated over a range of quantiles p by fitting the Heffernan–Tawn model
to (Y1, Y2) conditioning on either margin. Fig. 2 shows that the conditional tail probability χ(p) → 0 as p → 1−, which
indicates that Y1 and Y2 are asymptotically independent, see [14]. Nonetheless, there is a clear difference between the
estimation conditional on either Y1 or Y2 being large. In particular as we extrapolate further towards the upper tail of the
marginal distribution, the difference widens. This problem of self-consistency is given a brief discussion by the authors in
the original paper and we explore more about this issue here.

The rest of the paper is structured as follows. Section 2 introduces the Heffernan–Tawnmodel and its application inmore
details; Section 3 focuses on the conditions of self-consistency and its implication for the residual distribution; Section 4
proposes a self-consistent non-parametric estimation method as well as a diagnostic method; Section 5 includes some
examples based on both simulated and real data and compares the performance of the new estimation method with the
existing method; Section 6 concludes the main findings and discusses briefly the areas for future work.

1 Without making any distributional assumption on X̃1 and X̃2 , wemodel the body of the distribution by standard Gaussian kernel density and the upper
and lower tail by generalized Pareto distribution.
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