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a b s t r a c t

We propose an extension of the well-known Fay and Herriot (1979) area level model to
sub-area level. Not only this model may be used to estimate small area means by borrow-
ing strength from related areas, but also by borrowing strength from sub-areas to obtain
more efficient sub-area estimators. Model-based empirical best linear unbiased prediction
(EBLUP) estimators are obtained from the BLUP estimators by replacing the model param-
eters by suitable estimators, using an iterative method based on weighted residual sum
of squares. Second order approximations to the mean squared error (MSE) of the EBLUP
estimators are obtained and then used to drive MSE estimators unbiased to second order.
Results of simulation studies on the performance of the proposed estimators are also pro-
vided.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Sample surveys are generally designed to provide estimates of totals and means of items of interest for large subpopula-
tions (or domains). Such estimates are ‘‘direct’’ in the sense of using only the domain-specific sample data, and the domain
sample sizes are large enough to support reliable direct estimates that are ‘‘design based’’. The associated inferences (stan-
dard errors, confidence intervals, etc.) are based on the probability distribution induced by the sampling design with the
population item values held fixed. Standard text books on sampling (e.g. Cochran [2], Thompson [19], Lohr [15]) provide
extensive accounts of design-based direct estimation.

In recent years, demand for reliable estimates for small domains (small areas) has greatly increased worldwide due to
their growing use in formulating policies and programmes, allocation of government funds, regional planning, marketing
decisions at local level and other uses. Examples of small domain estimation include poverty counts of school-age children
at the county level, income for small places, monthly unemployment rates for Census Metropolitan Areas, health-related
estimates for local areas and so on (Rao [17, Chapter 5]). However, due to cost and operational considerations, it is seldom
possible to procure a large enough overall sample size to support direct estimates for all domains of interest.We use the term
‘‘small area’’ to denote anydomain forwhichdirect estimates of adequate precision cannot beproduceddue to small domain-
specific sample size. It is often necessary to employ ‘‘indirect’’ estimates for small areas that can increase the ‘‘effective’’
domain sample size by ‘‘borrowing strength’’ from related areas through linking models, using census and administrative
data and other auxiliary data associatedwith the small areas. Such small areamodelsmay be classified into two broad types:
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(i) Area-level models that relate small area direct estimates to area-specific covariates; such models are used if unit-level
data are not available. (ii) Unit-level models that relate the unit values of a study variable to associated unit-level covariates
with known areameans and area-specific covariates. A comprehensive account of model-based small area estimation under
area-level and unit-level models is given by Rao [17]; see also Jiang and Lahiri [12], Datta [4], and Jiang [11] for recent
overviews.

In this paper, we study model-based estimators for sub-areas nested within areas. We introduce a sub-area level model
that relates a sub-area direct estimator to sub-area specific covariates, sub-area random effect and associated area random
effect. Such a model is useful if unit level auxiliary variables are not available. The proposed model is a natural extension of
the well-known Fay and Herriot [6] area-level model to sub-area level. The sub-area model is used to estimate small area
means by borrowing strength from related areas. In addition, it can borrow strength from sub-areas to obtain more efficient
sub-area estimators. Empirical best linear unbiased prediction (EBLUP) estimators of sub-area level and area levelmeans are
obtained from the BLUP estimators [10] by estimating the model parameters using an iterative method based on weighted
residual sum of squares. We obtain second order approximations to the mean squared error (MSE) of the EBLUP estimators
and then use them to deriveMSE estimators unbiased to second order. Our approximations toMSE and its estimator assume
that the number of sampled areas is large but the number of sampled sub-areas within a sampled area can be small. Our
paper extends the results of Datta et al. [5] for the area level model to the sub-area level model.

The paper is organized as follows: In Section 2, we introduce the sub-areamodel and derive EBLUP estimators of area and
sub-area means when the variance components σ 2

v and σ 2
u , corresponding to areas and sub-areas, are estimated iteratively

based on a weighted residual sum of squares method. In Section 3, we derive second order approximations to MSE of the
EBLUP estimators. In Section 4, estimation of MSEs, unbiased to second order, is studied. Simulation studies, reported in
Section 5, provide results on the performance of the proposed estimators.

2. Empirical best linear unbiased prediction

In the context of linear mixed models, we propose the following linking model for the sub-area means µij:

µij = x′

ijβ + vi + uij, i = 1, . . . ,m; j = 1, . . . ,Ni, (2.1)

where j denotes a sub-area within area i, xij is a p × 1 vector of sub-area level auxiliary variables (m > p), β is a p × 1

vector of regression parameters, vi
i.i.d.
∼ N(0, σ 2

v ) are area random effects, and uij
i.i.d.
∼ N(0, σ 2

u ) are sub-area random effects.
We assume that ni sub-areas are sampled from the Ni sub-areas in the ith area.

On the other hand, the sampling model is given by

yij = µij + eij, (2.2)

where yij is a direct estimator of µij with sampling error eij, and eij|µij
ind
∼ N(0, σ 2

eij) with known sampling variances σ 2
eij.

Assuming no sample selection bias, the sampling model (2.2) combined with the linking model (2.1) leads to the sub-area

yij = x′

ijβ + vi + uij + eij, i = 1, . . . ,m; j = 1, . . . , ni. (2.3)

Model (2.3) accounts for the sub-area level effect uij as well as the area level effect vi. It enables us to estimate both small
area means, µi, and sub-area means, µij, by borrowing strength from related areas as well as sub-areas, where µij is given
by (2.1) and µi =

Ni
j=1 Nijµij/Ni+ = X̄ ′

i β + vi + Ūi is the mean of area i. Here, Ni+ =
Ni

j=1 Nij, X̄i =
Ni

j=1 Nijxij/Ni+, Ūi =Ni
j=1 Nijuij/Ni+ and Nij is the number of units in sub-area j of area i.
Fuller and Goyeneche [7] proposed a sub-area model, similar to our model (2.3), in the context of Small Area Income

and Poverty Estimation (SAIPE) in the United States. In this application, county is the sub-area nested within a state (area)
and direct county estimates obtained from the Current Population Survey (CPS) data. County-level auxiliary variables are
ascertained from census and administrative records.

In matrix notation, the model (2.3) can be written as

yi = Xiβ + vi1ni + ui + ei, i = 1, . . . ,m,

where yi = (yi1, yi2, . . . , yini)
′ is a ni × 1 vector, Xi is a ni × p matrix with rows x′

ij, (j = 1, . . . , ni), ui = (ui1, . . . , uini)
′ and

ei = (ei1, . . . , eini)
′. Equivalently, we have

yi = Xiβ + Zibi + ei, i = 1, . . . ,m, (2.4)

where Zi = (1ni |Ini) with 1ni as the vector of ones and Ini as the identity matrix with dimension ni, and bi = (vi, u′

i)
′. Model

(2.4) is a linear mixed model with a block diagonal covariance structure with blocks cov(yi) = Vi with

Vi = σ 2
v Jni + diag(σ 2

u + σ 2
ei1, . . . , σ

2
u + σ 2

eini), (2.5)

where Jni = 1ni1
′
ni .
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