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a b s t r a c t

This paper proposes a new model named as the multivariate generalized Poisson log-
t geometric process (MGPLTGP) model to study multivariate time-series of counts with
overdispersion or underdispersion, non-monotone trends within each time-series and
positive or negative correlation between pairs of time-series. This model assumes that
the multivariate counts follow independent generalized Poisson distributions with an
additional parameter to adjust for different degrees of dispersion including overdispersion
and underdispersion. Their means after discounting the trend effect geometrically by ratio
functions form latent stochastic processes and follow a multivariate log-t distribution
with a flexible correlation structure to capture both positive correlation and negative
correlation. By expressing the multivariate Student’s t-distribution in scale mixtures of
normals, themodel can be implemented throughMarkov chainMonte Carlo algorithms via
the user-friendly WinBUGS software. The applicability of theMGPLTGPmodel is illustrated
through an analysis of the possession and/or use of two illicit drugs, amphetamines and
narcotics in New South Wales, Australia.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The modelling of multivariate time-series of counts has wide applications in different areas. However researches for
multivariate count models are relatively limited due to the computational difficulties in implementation. This is true also in
other context, for example, hypothesis testing for dispersion when the methods proposed for continuous data (for a recent
proposal, see [23]). Multivariate normal (MN) distribution is commonly used as an alternative choice to model discrete
data [11]. Unfortunately, it becomes inappropriate when the count data is skewed, resulting from small means and/or zero-
inflation.

In order to study multivariate time-series of counts with different properties in dispersion, trend and correlation, this
paper proposes a new model namely the multivariate generalized Poisson log-t geometric process (MGPLTGP) model. This
model is shown to have several advantages over some existingmodels in the literature. Amongst thesemodels, models with
bivariate PoissondistributionproposedbyKocherlakota andKocherlakota [16] andmultivariate Poisson (MP) distribution by
Johnson et al. [10] expressed each component of theMP distribution as a sumof two independent univariate Poisson random
variables in which one variable is common in all the sums. In this way, the model has a closed form pdf as the marginal
distribution is essentially the simple Poisson distribution with mean equals the variance and the covariance between all
pairs of variables is themean of the common Poisson variable. However, the equal and positive correlation between all pairs
of Poisson variables is very restrictive and the model is only applicable to equidispersed data.
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Thereafter, Karlis and Meligkotsidou [12] extended the MP distribution to allow different covariance for each pair
of variables. Nevertheless, the restriction on positive correlation and equidispersion still remain unsolved. To deal with
negative correlation and overdispersion, a number of researches have considered using a mixed model approach. These
MP mixed models can be classified into two types. The first type of model contains a MP distribution with mean follows
a univariate mixing distribution [15]. However this model, though allows overdispersion, can only apply to positively
correlatedmultivariate counts as the covariance function is always positive. The second type of models adopt amultivariate
mixing distribution with possible negative correlation on the mean vectors of the MP distributions. However this type of
MP mixed model, though are suitable for modelling overdispersed count data still cannot cope with underdispersed data.
Moreover, the resulting distribution are so complicated that in practice most models consider only a special case in which
components of the MP distribution are assumed to be independent [14].

To simplify the model, this paper adopts the MP mixed model of the second type with independent generalized Poisson
(GP) distribution [7] for each time-series. The multivariate mixing distribution captures different covariance structures
using different covariance matrices. Moreover, as non-stationarity is often prominent in time-series data, this paper further
extends the geometric process model pioneered by Lam [17,18] for studying trend dynamic in the multivariate GP mixed
model. The geometric process model was first applied to model inter-arrival times with monotone trend in reliability
problems. Later on, Wan and Chan [28] proposed the Poisson geometric process (PGP) model which is essentially a
Poisson–gamma mixed model to model longitudinal time-series of counts with a trend movement. The model is further
extended to allow mixture effect and overdispersion due to zero-inflation. In addition, Wan and Chan [29] introduced the
robust PGP model which is a Poisson mixed model with heavy-tailed mixing distribution such as Student’s t or exponential
power distributions. The thick tails of the distributions enhance extra Poisson variability to handle serious overdispersion
due to extreme observations. To model underdispersion, Wan and Chan [30] adopt the GP distribution to handle count
data with under or overdispersion. This generalized Poisson geometric process (GPGP) model is found to be the most
comprehensive PGP models.

In the GPGP model, each time series Wit , t = 1, . . . , n follows an independent GPD with the mean being a latent GP,
Xit , t = 1, . . . , n and the corresponding latent detrended stochastic process is given by Yit = Xit/at−1 for some ratio a > 0.
We assign a logmultivariate-t (MT) distribution as themixing distribution to the latent variables (Y1t , . . . , Ymt) such that its
mean and covariancematrix can accommodate covariate effects and different correlation structures respectively. MT distri-
bution is preferred toMN distribution adopted in [1,21] as MT distribution provides more flexible tails for handling outlying
observations. The resultant model is essentially a multivariate version of the model combining the methodologies of robust
PGP and GPGP models [29,30] and is called multivariate generalized Poisson log-t geometric process (MGPLTGP) model.

For model implementation, the expectation–maximization (EM) algorithm in the likelihood approach [11,13] becomes
computational intensive due to the complexity of the joint probability function as the number of dimension increases. To
avoid the evaluation of the complex joint probability function, Karlis and Xekalaki [14] adopted a Bayesian approach by con-
structing a simple Gibbs sampler to simulate the parameters from their full conditional posterior distributions. TheMLTmix-
ing distribution is expressed in scalemixtures ofMLNs to facilitate the sampling frommultivariate normal distribution using
Markov chain Monte Carlo (MCMC) algorithms. Moreover the mixing parameters in the scale mixtures representation help
to identify extreme observations in the outlier diagnosis. Thismethod is adopted to estimate the parameters of theMGPLTGP
model applied to study the trends and correlation in a bivariate time-series of arrests on use or possession of two illicit drugs
in Sydney from January 1995 to December 2008. MGPLTGP model is shown to outperform the MP and MP mixed models.

The rest of the paper is organized as follows. Section 2 briefly reviews the well-established MP models and MP mixed
models onwhich our proposedmodel is built. Section 3 introduces the development of the PGP, robust PGP andGPGPmodels
from the basic geometric process model. Section 4 investigates the proposedMGPLTGPmodel using scale mixtures of MLNs.
In Section 5, we discuss the implementation of MGPLTGP model using MCMC algorithms followed by the introduction of
the model assessment criterion. Then a real data is analysed using the MGPLTGP model and compared to MP and mixed MP
models in Section 6. The last Section contains some concluding remarks with plausible future extensions.

2. Review of multivariate Poisson models

2.1. Multivariate Poisson model

Suppose that Vi, i = 0, . . . ,m are independent Poisson random variables with mean ηi. Then the random variables
Wi = Vi + V0, i = 1, . . . ,m follow jointly a multivariate Poisson (MP) distribution where m represents the dimension of
the distribution [22]. DenotingW = (W1, . . . ,Wm), the joint probability mass function (pmf) is given by:

fMP(w|η) = exp
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where the observed vector w = {w1, w2, . . . , wm} and ξ = min(w1, w2, . . . , wm). Marginally, each Wi follows a Poisson
distribution and its mean, variance and covariance are given by:

E(Wi) = Var(Wi) = ηi + η0 and Cov(Wi,Wj) = η0 for all i ≠ j.
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