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a b s t r a c t

We propose a new class of nonparametric tests for the supposition of independence
between two continuous random variables X and Y . Given a size n sample, let π be
the permutation which maps the ranks of the X observations on the ranks of the Y
observations. We identify the independence assumption of the null hypothesis with the
uniform distribution on the permutation space. A test based on the size of the longest
increasing subsequence of π (Ln) is defined. The exact distribution of Ln is computed from
Schensted’s theorem (Schensted, 1961). The asymptotic distribution of Ln was obtained by
Baik et al. (1999). As the statistic Ln is discrete, there is a small set of possible significance
levels. To solve this problem we define the JLn statistic which is a jackknife version of Ln,
as well as the corresponding hypothesis test. A third test is defined based on the JLMn
statistic which is a jackknife version of the longest monotonic subsequence of π . On a
simulation study we apply our tests to diverse dependence situations with null or very
small correlations where the independence hypothesis is difficult to reject. We show that
Ln, JLn and JLMn tests have very good performance on that kind of situations. We illustrate
the use of those tests on two real data examples with small sample size.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Call Ω the space of the univariate, continuous cumulative distributions. Let (X, Y ) be a random vector with unknown
joint cumulative distribution H and univariate marginal distributions F and G respectively, F ∈ Ω, G ∈ Ω. Suppose that
(x1, y1), . . . , (xn, yn) is a paired sample of size n of (X, Y ). Set

H0 : X and Y are independent. (1)

A test is constructedwith no extra assumption (other than continuity) about the formof themarginal distributions (marginal
free test). The procedure is based on the size of the longest increasing subsequence of the randompermutation defined by the
paired sample and denoted by Ln. Theorem 3.1 shows how to compute the exact distribution of Ln and it is a straightforward
application of Schensted’s theorem and Frame et al.’s theorem, see Schensted [12] and Frame et al. [6]. In addition, we
proposed two test statistics denoted briefly by JLn and JLMn, respectively. JLn is a Jackknife version of Ln while JLMn is based
on the size of the longest monotonic subsequence.

The power of these tests is compared with those of various existing tests by simulation. This new class of tests is rank-
based, therefore, it will be compared with other rank-based procedures for testing independence as the nonparametric
tests Kendall, Spearman and Hoeffding and the independence test from Genest et al. [7], denoted here by Genest’s test.
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Fig. 1. The left figure is the scatter plot of a sample (size = 200) from a mixture 50–50 of two bivariate Normal distributions, with correlation 0.9 and
−0.9 respectively (distribution D1 from Section 4). The right figure shows the plot of the sample size vs. the empirical power (level 0.01) for the same
distribution.

We include also the MIC test, based on the maximal information coefficient, from Reshef et al. [11]. In addition we
include Pearson’s test for its well known performance in the normal case. In the case of Kendall’s test, Spearman’s test,
Hoeffding’s test and Pearson’s test, each methodology estimates the association between X and Y and computes a test of
the association being zero. They use different measures of association, all of them in the interval [−1, 1] with 0 indicating
no association/correlation. The asymptotic Genest’s test consist on computing the approximate p-values of the test statistic
with respect to the empirical distribution obtained by simulation. For the MIC test, the p-value of a given MIC score is
computed by selecting a probability δ of false rejection, creating a set of 1

δ
− 1 surrogate datasets, and comparing the MIC

of the real data with the MIC scores of the surrogate datasets. To compute the p-values for Kendall, Spearman and Pearson
methods, we use the ‘‘cor.test’’ function, available in the ‘‘stat’’ package from R-project. Details about each test may be found
in Hollander et al. [9]. In the case of Hoeffding’s test, to compute the p-values, we use the ‘‘hoeffd’’ function, available in the
‘‘Hmisc’’ package from R-project. For Genest’s test we use the ‘‘indepTest’’ function, available in the ‘‘copula’’ package from
R-project. For the MIC test was used the support program given in http://www.exploredata.net/.

We performed a simulation study with different conditions. For example, we use a mixture 50–50 of two bivariate
Normal distributions, with correlation ρ and −ρ respectively (zero expected correlation). In this case Ln, JLn and JLMn were
competitive and markedly more powerful than the other six tests considered. Fig. 1, on the left, shows a scatter plot for a
sample (size = 200) of this mixture when ρ = 0.9 and Fig. 1, on the right, shows the sample size versus the empirical
power (level 0.01). The other tests do not detect the dependence for any sample size.

This situation illustrates the usefulness of our proposal, we will explore more situations like that, in Section 4.2.
We applied the tests based on the longest increasing subsequence to two real datasets, both with small sample sizes

considering that for bigger sample sizes there exists very efficient procedures designed for asymptotic situations. The
first dataset was provided by Professor Dalia Chakrabarty, researcher in the School of Physics and Astronomy, University
of Nottingham. It consist on two measures, the projected radius and the radial velocity for 30 Globular Clusters around
the galaxy NGC 3379 (see Chakrabarty [5]). The second dataset appears on ‘‘VGAM’’ (package from R-project), named
‘‘coalminers’’. The data is about coal-miners who are smokers without radiological pneumoconiosis, classified by age,
breathlessness and wheeze.

We adapted and implemented (in C language) the algorithm provided by Zoghbi et al. [13]. We use that algorithm to
compute the exact probability of Ln, in the case of n ≤ 100. For n > 100 the asymptotic distribution of Ln, obtained by Baik
et al. [3] can be used and we show how to use it in our test, in Section 3. Nevertheless, the exact probability could be
calculated for n > 100 also. The probabilities for JLn and JLMn were estimated by simulation. The tests and simulations were
implemented in the R-project environment (LIStest package).

Section 2 provides the main concepts and the definition of the test statistic. In Section 3 we calculate the distribution of
the test statistic, proposed here. In Theorem 3.1 is shown the exact distribution of the test statistic under the independence
assumption, by a direct application of results from Schensted [12] and Frame et al. [6]. Section 4 is devoted to show the
capacity to detect dependence of each test statistic introduced here. Through simulations, we discuss each one of the test
statistics, face to facewith several dependence situations.We apply the test, to real datasets in Section 4.3. In the Appendix A
we include the proof of Theorem 3.1.
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