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a b s t r a c t

Let Xi ∼ beta(αi, 1) and Yi ∼ beta(γi, 1), i = 1, 2, be all independent. We show that

(α1, α2)
m
≽ (γ1, γ2) implies (Y1:2, Y2:2) ≥st(X1:2, X2:2). We then extend this result to the

general case of the proportional reversed hazard rates (PRHR) model.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Order statistics have been studied quite extensively in the literature due to the key role they play in many areas of statis-
tics. They especially play a special role in reliability theory wherein they correspond to k-out-of-n systems. Such a system,
consisting of n components, works as long as at least k components work. Let X1, . . . , Xn denote the lifetimes of the com-
ponents and X1:n ≤ · · · ≤ Xn:n be the corresponding order statistics. Then, Xn−k+1:n corresponds to the lifetime of such a
k-out-of-n system. So, many properties of k-out-of-n systems have been established in the literature by using the theory of
order statistics; see [1] for some recent results in this direction. Interested readers may refer to Balakrishnan and Rao [2,3]
for elaborate discussions on theory and applications of order statistics.

Let X1, . . . , Xn denote the lifetimes of n components of a systemwith distribution functions F1, . . . , Fn, respectively. Then,
X1, . . . , Xn are said to follow the PRHR model if there exist positive constants α1, . . . , αn and a distribution function F(x)
with corresponding density function f (x) such that Fi(x) = Fαi(x) for i = 1, . . . , n. In this case, F(x) and r̃(x) = f (x)/F(x)
are called the baseline distribution and baseline reversed hazard functions, respectively, andα1, . . . , αn are the proportional
reversed hazard rate parameters. Distributions such as power, generalized exponential and exponentiated Weibull are all
special cases of this model. One may refer to Chapter 7 of Marshall and Olkin [5] for a discussion on this model.

We now review briefly some common notions of stochastic orders and majorization order. Throughout, the terms
increasing and decreasing are used for non-decreasing and non-increasing, respectively. Let X and Y be two random variables
with distribution functions F and G, survival functions F̄ = 1− F and Ḡ = 1−G, and density functions f and g , respectively.
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X is said to be larger than Y in the usual stochastic order (denoted by X ≥st Y ) if F̄(x) ≥ Ḡ(x). A multivariate version of
the usual stochastic order is as follows. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors. Then, X is said
to be larger than Y in the usual multivariate stochastic order (denoted by X≥st Y) if E[φ(X)] ≥ E[φ(Y)] for all increasing
functions φ : Rn

→ R. It is easy to see that the multivariate stochastic ordering implies componentwise usual stochastic
ordering. Interested readers may refer to Müller and Stoyan [9] and Shaked and Shanthikumar [11] for detailed discussions
on univariate and multivariate stochastic orderings.

For two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), let {x(1), . . . , x(n)} and {y(1), . . . , y(n)} denote the increasing

arrangements of their components, respectively. A vector x is said to majorize another vector y (written as x
m
≥ y) ifi

j=1 x(j) ≤
i

j=1 y(j) for i = 1, . . . , n − 1, and
n

j=1 x(j) =
n

j=1 y(j). A real-valued function φ defined on a set A ⊆ Rn is

said to be Schur-convex (Schur-concave) on A if x
m
≽ y implies φ(x) ≥ (≤)φ(y) for any x, y ∈ A. One may refer to Marshall

et al. [6] for a detailed discussion on majorization and Schur-type functions.
In this work, we obtain some new results about stochastic comparison of vectors of order statistics. Specifically, taking

Xi ∼ beta(αi, 1) and Yi ∼ beta(γi, 1), i = 1, 2, all being independent, we prove that

(α1, α2)
m
≽ (γ1, γ2) H⇒


Y1:2, Y2:2


≥st


X1:2, X2:2


. (1.1)

We further extend the result in (1.1) to the general PRHR model. It is useful to mention here that the beta distributions
considered here are also special cases of the Kumaraswamy distributions [4].

2. Main results

In this section, we consider stochastic comparison of vectors of order statistics in the PRHR model. In this case, the beta
distribution mentioned above is the simplest element of the PRHR model. Also, some other known distributions belonging
to the PRHRmodel can be derived by a simple transform on the beta distribution. For this reason, we first focus on this case
and present a result concerning some properties of order statistics arising from heterogeneous beta random variables. The
following theorem gives necessary and sufficient conditions for characterizing Schur-convex and Schur-concave functions.

Theorem 2.1 ([6, p. 84]). Let I ⊂ R be an open interval and φ : In → R be continuously differentiable. Then, the necessary and
sufficient conditions for φ to be Schur-convex on In are φ is symmetric on In and for all i ≠ j,

(zi − zj)


∂φ

∂zi
(z) −

∂φ

∂zj
(z)


≥ 0 for all z ∈ In,

where ∂φ

∂zi
(z) denotes the partial derivative of φ with respect to its ith argument. Function φ is Schur-concave if and only if it is

symmetric and the reversed inequality sign holds in the above inequality.

Lemma 2.1. Let Xi ∼ beta(αi, 1), i = 1, 2, be independent. Then,
(i) X2:2 ∼ beta(α1 + α2, 1);
(ii) X1:2/X2:2 and X2:2 are independent;
(iii) the distribution function of X1:2/X2:2 is Schur-convex in (α1, α2).
Proof. (i) The distribution function of X2:2, for x ∈ (0, 1), is

FX2:2(x) = FX1(x) FX2(x) = xα1+α2 , x ∈ (0, 1),

and so Part (i) is immediate.
(ii) The joint density function of (X1:2, X2:2) is given by

f (x1, x2) = fX1(x1)fX2(x2) + fX1(x2)fX2(x1)

= α1α2


xα1−1
1 xα2−1

2 + xα2−1
1 xα1−1

2


I(0,1)(x1) I(x1,1)(x2),

where IA(x) = 1 if and only if x ∈ A. Let U1 = X1:2/X2:2 and U2 = X2:2. Now, to prove the required result, we must show
that

fU1,U2(x1, x2) = fU1(x2) fU2(x2) for all x1, x2, (2.2)

where fU1,U2(., .) is the joint density function of (U1,U2), and fUi(.) are the density functions of Ui, i = 1, 2. It is easy to
see that

fU1,U2(x1, x2) = x2 f (x1x2, x2)

=


α1α2

α1 + α2


xα1−1
1 + xα2−1

1


I(0,1)(x1)

 
(α1 + α2) x

α1+α2−1
2 I(0,1)(x2)


= fU1(x1) fU2(x2),

where the last equality follows from Part (i). Thus, Part (ii) follows.
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