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a b s t r a c t

Bayesian nonparametricmodels based on infinitemixtures of density kernels have been re-
cently gaining in popularity due to their flexibility and feasibility of implementation even in
complicated modeling scenarios. However, these models have been rarely applied in more
than one dimension. Indeed, implementation in themultivariate case is inherently difficult
due to the rapidly increasing number of parameters needed to characterize the joint depen-
dence structure accurately. In this paper, we propose a factorization scheme ofmultivariate
dependence structures based on the copula modeling framework, whereby each marginal
dimension in themixing parameter space ismodeled separately and themarginals are then
linked by a nonparametric random copula function. Specifically, we consider nonparamet-
ric univariate Gaussian mixtures for the marginals and a multivariate random Bernstein
polynomial copula for the link function, under the Dirichlet process prior. We show that
in a multivariate setting this scheme leads to an improvement in the precision of a density
estimate relative to the commonly used multivariate Gaussian mixture. We derive weak
posterior consistency of the copula-based mixing scheme for general kernel types under
high-level conditions, and strong posterior consistency for the specific Bernstein–Gaussian
mixture model.

© 2014 Elsevier Inc. All rights reserved.

1. Bayesian nonparametric copula kernel mixture

Bayesian infinite mixture models are useful both as nonparametric estimation methods and as a way of uncovering
latent class structure that can explain the dependencies among the model variables. Such models express a distribution as
a mixture of simpler distributions without a priori restricting the number of mixture components which is stochastic and
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data-driven. In many contexts, a countably infinite mixture is also a more realistic model than a mixture with a small fixed
number of components.

Even though their theoretical foundations were developed early [18,2,39], infinite mixture models have only recently
become computationally feasible for practical implementation on larger data sets with the development of Markov chain
Monte Carlo (MCMC) methods [16,42]. Bayesian infinite mixture models are becoming increasingly popular. Among the
many areas of applications are treatment effects [11], autoregressive panel data [30], finance [31], latent heterogeneity in
discrete choicemodels [33,7], contingent valuationmodels [19], and instrumental variables [12]. There is a growing number
of applications in pattern recognition and other fields of machine learning (see, e.g., [17]), in biology (see, e.g., [37]), in
network traffic (see, e.g., [1]), in DNA profiling (see, e.g., [65]), and other fields.

Most of these applications are univariate, or structured as conditionally independent copies of the univariate case, albeit
in some fields, such as machine learning, infinite mixture models have been used in fairly high dimensions. Fundamentally,
the computational complexity associated with algorithms based on popular nonparametric priors, such as the Dirichlet
process, is not directly related to the dimensionality of the problem. However, the rapid increase in the number of mixture
components required to represent a nonparametric dependence structure accurately in high dimensions poses a practical
problem at the implementation level.

From a practical point of view, Dirichlet process priors can facilitate the feasibility of implementation by selecting rela-
tively few latent classes in eachMCMC step. However, this sparsity is traded off with the accuracy of estimation. The analyst
does have the option to generate a large number of latent class proposals by tightening the prior of the concentration param-
eter in the Dirichlet process mixture. Nonetheless, many of the latent classes proposed in this way are likely to be specified
over regions of the parameter space that are only weakly supported by the data. Hence, they will either not be accepted or
quickly discarded during theMCMC run, leading to a noisy estimate. The severity of the trade-off is further exacerbatedwith
higher dimensions: few mixing components can provide a very inaccurate representation of the data generating process,
but strengthening the prior to increase their number will yield a higher rejection rate.

From our practical experience, we can alleviate some of these problems by relaxing the joint parametric specification of
themixing kernel, such as in the case of the typically usedmultivariate Gaussian kernel. If the joint parametricmixing kernel
can be decomposed into flexible building blocks, each of which can be parsimoniously determined with high probability
strongly supported by the data then we should expect to obtain a more accurate representation. However, decompositions
by conditional expansions such as the Cholesky factorization of the covariance matrix of the multivariate Gaussian kernel
still preserve the joint parametric dependence structure of the kernel. What is needed for our purpose is a decomposition
of the dependence structure itself.

In this paper, we propose a copula-based factorization scheme for Bayesian nonparametric mixture models whereby
each marginal dimension in the mixing parameter space is modeled as a separate mixture and these marginal models are
then joined by a nonparametric copula function based on random Bernstein polynomials. In the implementation, only a few
latent classes are required for each of the marginals, regardless of the overall number of dimensions. We show that this
scheme leads to an improvement in the precision of a density estimate in finite samples relative to mixtures of Gaussian
kernels, providing a suitable tool for applications requiring joint dependence modeling in the multivariate setting. Bearing
in mind Freedman’s [20] result concerning a topologically wide class of priors leading to inconsistent posteriors in Bayesian
nonparametric models, we specify the conditions under which our approach yields posterior consistency; both for weak
topologies for a general class of kernels and strong topologies for the specific case of random Bernstein polynomial copula
and Gaussian mixture marginals (Bernstein–Gaussian mixture).

In a related literature Chen et al. [10] consider a copula sievemaximum likelihood estimatorwith a parametric copula and
nonparametric marginals, while Panchenko and Prokhorov [43] analyze the converse problem, with parametric marginals
and a nonparametric copula. In contrast, our procedure is based on both nonparametric copula and marginals. Moreover,
in our case the number of mixture components is stochastic and automatically selected during the MCMC run, without the
need for model selection optimization required for approaches based on maximum likelihood.

Nonparametric copula-basedmixturemodels have been analyzed in several specific contexts distinct fromours. Silva and
Gramacy [55] present variousMCMCproposals for copulamixtures. Fuentes et al. [21] analyze a spatial Dirichlet process (DP)
copulamodel based on the stick-breakingDP representation. Rey andRoth [49] introduce a copulamixturemodel to perform
dependency-seeking clustering when co-occurring samples from different data sources are available. Their model features
nonparametric marginals and a Gaussian copula with block-diagonal correlation matrix. Rodriguez et al. [50] construct a
stochastic process where observations at different locations are dependent, but have a common marginal distribution. De-
pendence across locations is introduced by using a latent Gaussian copulamodel, resulting in a latent stick-breaking process.
Parametric Bayesian copula models and their mixtures have also been analyzed in [48,56,3,14,38,5,29,64], among others.

Posterior consistency1 can fail in infinite-dimensional spaces for quite well-behaved models even for seemingly natu-
ral priors [20,13,32]. In particular, the condition of assigning positive prior probabilities in ‘‘usual’’ neighborhoods of the

1 Although consistency is intrinsically a frequentist property, it implies an eventual agreement among Bayesians with different priors. For a subjective
Bayesian who dispenses of the notion of a true parameter, consistency has an important connection with the stability of predictive distributions of future
observations — a consistent posterior will tend to agree with calculations of other Bayesians using a different prior distribution in the sense of weak
topology. For an objective Bayesian who assumes the existence of an unknown true model, consistency can be thought of as a validation of the Bayesian
method as approaching the mechanism used to generate the data [28]. As pointed out by a referee, our treatment of posterior consistency is concerned
with the behavior of the posterior with respect to draws from a fixed sampling distribution, and so can be viewed as frequentist style asymptotics.
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