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a b s t r a c t

Classical sufficient dimension reductionmethods are sensitive to outliers present in predic-
tors, and may not perform well when the distribution of the predictors is heavy-tailed. In
this paper,we propose two robust inverse regressionmethodswhich are insensitive to data
contamination: weighted inverse regression estimation and sliced inverse median estima-
tion. Both weighted inverse regression estimation and sliced inverse median estimation
produce unbiased estimates of the central space when the predictors follow an elliptically
contoured distribution. Our proposals are comparedwith existing robust dimension reduc-
tion procedures through comprehensive simulation studies and an application to the New
Zealandmussel data. It is demonstrated that ourmethods have better overall performances
than existing robust procedures in the presence of potential outliers and/or inliers.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In light of recent development of science and technology, high-dimensional data are collected at an unprecedented speed
in various fields such as biology, economics and finance, etc. Analysis of high-dimensional data calls for new statistical theo-
ries and methodologies. A natural way to analyze high-dimensional data is to first reduce the dimensionality of the original
data without losing vital information, then carry out ensuing statistical analysis based on the reduced data. Supposewe con-
sider the regression of a univariate response Y onto a p-dimensional predictor vector X. Sufficient dimension reduction [5]
aims at finding low-dimensional linear combinations of the predictors which contain all the regression information, that is,

Y X | BTX, (1)

where stands for statistical independence and B ∈ Rp×d with d < p. The conditional independence model (1) implies
that it suffices to use the reduced predictors BTX to infer about how the conditional distribution of Y |X changes with the
values of X. For any matrix B satisfying (1), its column space is a dimension reduction space. When it exists, the intersection
of all dimension reduction spaces is called the central space, and denoted by SY |X [4]. The dimension of SY |X, denoted by d,
is called the structural dimension of the central space.

Sliced inverse regression [19] is an early attempt to estimate SY |X. It divides the observations into several slices according
to the values of the response, then synthesizes the intraslice means of the predictors to estimate SY |X. Many proposals based
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on inverse conditional moments are developed thereafter, which include sliced average variance estimation [9], canonical
correlation [15], contour regression [22], directional regression [21], and cumulative slicing estimation [34], etc. These
methods relieve the curse of dimensionality [1] because they do not involve high-dimensional smoothing in estimating
SY |X. All these methods require that the predictor vector X satisfies the linearity assumption, which is fulfilled when X has
an elliptically contoured distribution with finite moments. When the predictor distribution is not elliptically contoured,
Cook and Nachtsheim [7] suggested a reweighting technique to achieve the desired distribution. Recently, the idea of the
central solution space [20,12] was proposed for non-elliptically distributed predictors.

We will focus on elliptically contoured predictors in this paper. Suppose throughout this paper that the density of X at
x ∈ Rp has the form

f (x) = |0|
−1/2g


∥x − µ∥

2
0


, for some function g(·), (2)

where ∥x − µ∥
2
0 = (x − µ)T0−1(x − µ), µ ∈ Rp is a p × 1 vector, and 0 ∈ Rp×p is a positive definite matrix. When X is

elliptically contouredwith infinitemoments, orwhen the elliptically contoured predictorX is subject to data contamination,
classical moment-based sufficient dimension reduction methods such as sliced inverse regression may fail.

Data contamination may be in the form of either outliers or inliers. The outliers are data values which lie in the tail of
the statistical distribution of a set of data values. The inliers, on the other hand, are data values that lie in the interior of a
statistical distribution and are in error. The inliers are often-times difficult to be distinguished from normal data values. An
example of an inlier might be a value in wrong units, say degrees Celsius instead of degrees Fahrenheit. Inliers can arise due
to systematic error and certain types of respondent and processing error. Existing robust sufficient dimension reduction pro-
cedures in the literature focus on outlier detection and correction, which include contour projection [29,23] and weighted
canonical correlation [31]. Contour projection first normalizes X to X̃ = (X−µ)/∥X−µ∥0, and then identifies SY |X through
SY |X̃. Weighted canonical correlation uses weight function 1/(1 + ∥X − µ∥

2
0) to downweight potential outliers, and then

performs classical canonical correlation [15] with the transformed predictors. Contour projection and weighted canonical
correlation are not sensitive to outliers, but they may inadvertently overweight inliers. We will see that in the presence of
inliers, both methods may be outperformed by the classical sliced inverse regression, which is only sensitive to outliers and
not sensitive to inliers.

In this paper we propose two robust inverse regression methods: weighted inverse regression estimation and sliced in-
verse median estimation. Both methods (i) perform comparably to the classical sufficient dimension reduction procedures
when the predictors have finite moments with no outliers or inliers, and (ii) keep good performances in the presence of out-
liers and inliers, and/or when the predictors have infinite moments. Due to the invariance law of central space [5], we have
SY |X = 0−1/2SY |Z, where Z = 0−1/2(X − µ) is the standardized predictor. Without loss of generality, we assume µ = 0,
0 = Ip, and work with Z and SY |Z for our population level development. Furthermore, denote J1, . . . , JH as a partition for
the range of Y . For categorical response, such a partition is obvious and H denotes the number of categories. For continuous
response, the partition could be taken as dividing the ordered response into H equally sized slices. For anymatrixM, denote
its column space as Span(M).

2. Weighted inverse regression estimation

We propose a weighted version of sliced inverse regression in this section. From (2), the standardized predictor Z has a
spherically contoured distribution, and the density of Z at z ∈ Rp only depends on ∥z∥ = (zTz)1/2. For A ∈ Rp×d satisfying
ATA = Id and Y Z | ATZ, let PA = AAT be the projection matrix onto the column space of A. Assuming its existence, it is
easy to see that the conditional expectation E(Z|ATZ) equals PAZ. Following Li [19], we have

E(Z|Y ) = E{E(Z|Y ,ATZ)|Y } = E{E(Z|ATZ)|Y } = PAE(Z|Y ) ⊆ SY |Z.

Thuswe canuse E(Z|Y ) to recoverSY |Z as long as themoments involved exist. However, E(Z|Y )maynot exist for heavy-tailed
distribution such as multivariate Cauchy. This observation motivates us to propose weighted inverse regression estimation.

Recall that J1, . . . , JH is a partition for the range of Y . Let κ(·) be a weighting function such that E {κ(∥Z∥)Z|Y ∈ Jh} exists
for h = 1, . . . ,H . Denote ph = E(Ih(Y )), where Ih(Y ) is the indicator function of Y ∈ Jh. Let µκ,h = E {κ(∥Z∥)Z|Y ∈ Jh} and
define the following kernel matrix

KWIRE ≡

H
h=1

phµκ,hµ
T
κ,h. (3)

The next result establishes the validity of estimating SY |Z via the column space of KWIRE.

Theorem 1. Suppose Z has a spherically contoured distribution. Then if all the moments involved exist, span (KWIRE) ⊆ SY |Z.

In the general case when X has an elliptically contoured distribution as in (2), Theorem 1 implies that 0−1/2span (KWIRE) ⊆

SY |X.
Contour projection of sliced inverse regression [29] is a special case of our proposal when we set κ(∥Z∥) = 1/∥Z∥.

The weighted canonical correlation method [31] is a weighted version of canonical correlation [15], and the corresponding
weight is proportional to κ(∥Z∥) = 1/(1+∥Z∥2). Bothmethodsmitigate the effect of potential outliers, as theweight is small
for large ∥Z∥. However, contour projection and weighted canonical correlation may end up giving unduly large weights to



Download	English	Version:

https://daneshyari.com/en/article/1145591

Download	Persian	Version:

https://daneshyari.com/article/1145591

Daneshyari.com

https://daneshyari.com/en/article/1145591
https://daneshyari.com/article/1145591
https://daneshyari.com/

