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a b s t r a c t

This paper is concerned with the ridge estimation of the parameter vector β in partial lin-
ear regression model yi = xiβ + f (ti)+ ϵi, 1 ≤ i ≤ n, with correlated errors, that is, when
Cov(ϵ) = σ 2V , with a positive definite matrix V and ϵ = (ϵ1, . . . , ϵn), under the linear
constraint Rβ = r , for a given matrix R and a given vector r . The partial residual estima-
tion method is used to estimate β and the function f (·). Under appropriate assumptions,
the asymptotic bias and variance of the proposed estimators are obtained. A generalized
cross validation (GCV) criterion is proposed for selecting the optimal ridge parameter and
the bandwidth of the kernel smoother. An extension of the GCV theorem is established to
prove the convergence of the GCV mean. The theoretical results are illustrated by a real
data example and a simulation study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Semiparametric regressionmodels or partial linearmodels are suitablemodels, when a suitable link function of themean
response is assumed to have a linear parametric relationship to some explanatory variables and its relation to other variables
has an unknown form. Let (y1, x1, t1), . . . , (yn, xn, tn) be observations that follow the semiparametric regression model

yi = xiβ + f (ti) + ϵi, i = 1, . . . , n, (1.1)

where xi = (xi1, xi2, . . . , xip) is a vector of explanatory variables, β = (β1, β2, . . . , βp)
′ is an unknown p-dimensional pa-

rameter vector, the ti’s are design pointswhich belong to some bounded domainD ∈ R, f (t) is an unknown smooth function
and ϵi’s are random errors which are assumed to be independent of (xi, ti).

This model is first considered by Engle et al. [3] to study the effect of weather on electricity demand, in which they as-
sumed that themean relationship between temperature and electricity usagewas unknownwhile other related factors such
as income and price were parameterized linearly. Surveys regarding the estimation and application of the model (1.1) can
be found in the monograph of Härdle et al. [7]. Speckman [16] studied partial residual estimation of β and f (·) in (1.1) and
obtained asymptotic bias and variance of the estimators. He showed that these estimators are less biased compared to the
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partial smoothing spline estimators. You and Chen [22] considered the problem of estimation in model (1.1) with serially
correlated errors, obtained the semiparametric generalized least squares estimator of the parametric component and stud-
ied the asymptotic properties of the estimator. You et al. [23] developed statistical inference for the model (1.1) for both
heteroscedastic and/or correlated errors. The general assumption Cov(ϵ) = σ 2V , with a positive definite matrix V is as-
sumed. For bandwidth selection in the context of kernel-based estimation in model (1.1), Li et al. [11] used cross-validation
criteria for optimal bandwidth selection.

Consider a semiparametric regression model in the presence of multicollinearity, or an overfitting caused by a large
number of variables, which is often called ‘‘large p small n problem’’. The existence of multicollinearity may lead to wide
confidence intervals for the individual parameters or linear combination of the parameters, andmay produce estimateswith
wrong signs. A severe multicollinearity or overfitting may also lead to the singularity of the matrix X ′X . In the partial resid-
ual estimation, the singularity problem may be intensified, when we considerX ′X in place of X ′X , whereX = (In − K )X
is the partial residual adjusted design matrix and K is the smoother matrix. An efficient approach to combat such singu-
larity and ill-posed problems is the ridge estimation (see [9]). Hu [10] developed the ridge estimator of the parametric and
nonparametric parts in a semiparametric regression model.

The restricted models are widely applicable in the problem of general hypothesis testing specially the generalized likeli-
hood ratio (GLR) tests in regressionmodels. Akdenïz and Tabakan [1] developed the restricted ridge estimators in semipara-
metric regression models. The problem of restricted ridge partial residual estimation in a semiparametric regression model
with correlated errors is studied by Roozbeh et al. [15]. They derived the asymptotic distributional bias and the risk of the
estimators under the balanced loss function. The feasible restricted ridge estimation in a semiparametric regression model
with correlated errors is considered by Roozbeh and Arashi [14] using kernel smoothing and cross validationmethods. They
obtained thenecessary and sufficient conditions for the superiority of the ridge type estimator over non-ridge type estimator.

The main focus of this paper is to study the asymptotic properties of the restricted ridge partial residual estimators of
β and f (·) in model (1.1) with correlated errors. The estimation method is presented in Section 2. Section 3 is devoted
to obtaining the asymptotic bias and variance of the proposed estimators. To select the optimal ridge parameter and the
bandwidth of the kernel smoother, a generalized cross validation criterion is proposed in Section 4. An extension of the
GCV theorem of Golub et al. [6] is established to prove the convergence of the expectation of the GCV criterion. Finally, in
Section 5, the theoretical results are applied to analyze the Canadian crime rate data set. The optimal selection of the ridge
parameter and the bandwidth is demonstrated in a simulation case study.

2. Restricted ridge partial residual estimation

The semiparametric regression model (1.1) can be rewritten in the matrix form as

y = Xβ + f + ϵ, (2.1)

where y = (y1, . . . , yn)′,X = (x1, . . . , xn)′ is the n × p fixed known design matrix, f = (f (t1), . . . , f (tn))′ and ϵ =

(ϵ1, . . . , ϵn). Also, suppose that t1, . . . , tn have bounded domain D ⊂ Rk.
We assume that in general, the error term ϵ satisfies E(ϵ) = 0 and E(ϵϵ′) = σ 2V , where σ 2 is unknown parameter and

V is a symmetric positive definite known matrix.
To estimate β and f (t) for a point t ∈ D, first consider the simplified model

y = f + ϵ, (2.2)

obtained from (2.5) with β = 0. The linear smoother of f (t) in (2.2) is f̂ (t) = k(t)y, with k(t) = (Knω(t, t1), . . . , Knω(t, tn)),
where Knω(·) is a kernel function of orderm with bandwidth parameter ω.

If the kernel function Knω(·) is of order m, according to [16], there exist bounded functions h1 and h2, such that for each
t ∈ D,

E

k(t)y − f (t)


= ωmh1(t)f (m)(t) + o(ωm) (2.3)

and

Var

k(t)y


= σ 2(nω)−1h2(t)(1 + o(1)), (2.4)

where f (m)(t) is the mth derivative of f (t).
To estimate the parameters of the model (2.1), we first remove the non-parametric effect, apparently. Assuming β to

be known, a natural nonparametric estimator of f (·) is f̂ (t) = k(t)(y − Xβ). Replacing f (t) by f̂ (t) in (2.1), the model is
simplified toy = Xβ + ϵ, (2.5)

wherey =

In − K


y,X =


In − K


X and K is the smoother matrix with i, jth component Knω(ti, tj).

We can estimate the linear parameter β in (2.1) under the assumption Cov(ϵ) = σ 2V , by minimizing the generalized
sum of squared errors

SS(β) = (y −Xβ)′V−1(y̌ −Xβ). (2.6)
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