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a b s t r a c t

To test heteroscedasticity in single index models, in this paper two test statistics are
proposed via quadratic conditional moments. Without the use of dimension reduction
structure, the first test has the usual convergence rate in nonparametric sense. Under
the dimension reduction structure of mean and variance functions, the second one has
faster convergence rate to its limit under the null hypothesis, and can detect local
alternative hypotheses distinct from the null at a much faster rate than the one the first
test can achieve. Numerical studies are also carried out to evaluate the performance of
the developed tests. Interestingly, the second one works much better than the first one
if the variance function does have a dimension reduction structure. However, it is not
robust against the violation of dimension reduction structure, in other words, the power
performance of the second testmay not be encouraging if without the dimension reduction
structure.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The single index model (SIM) with the scalar outcome variable Y and p-dimensional covariate X is formulated as

Y = g(X τβ) + ε, E(ε|X) = 0, (1.1)

where g(·) is an unknown smooth function, β is a p-dimensional unknown parameter vector, and ε is the error term
whose conditional expectation given X is zero. Here the notation X τ in (1.1) denotes transposition of X . For identifiability
consideration, we assume that the parameter vector β satisfies ∥β∥ = 1 and the first component of β is positive, where ∥ ·∥

stands for the Euclidean norm. If the link function g(·) is given in advance, the SIM reduces to a generalized linear regression
model. Thus, the SIM is comparably flexible in model structure. Further, compared with fully nonparametric regression
models, the SIM captures the information of Y through one-dimensional variable X τβ . This feature makes the SIM retain
a better interpretability and avoid the curse of dimensionality commonly occurred in nonparametric regression models.
Therefore, as a compromise between fully parametric and fully nonparametric regression models, the SIM has drawnmuch
attention due to its wide use in several research fields such as economics and statistics, see [17,12]. The readers can refer
to [10] for more detailed information about the SIM. There are two commonly used assumptions on the variance function
E(ε2

|X) in the literature: the first is that the variance function is purely nonparametric, and the second requires that the
variance function has a dimension reduction structure like the mean function has. This is often in the case in models with
dimension reduction structure such as generalized linear models. In more general semiparametric settings, [2] pointed out
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that when the central subspace and the central mean subspace have the same dimension, the second case holds naturally.
Particularly, there exist a number of proposals dealing with the second case, see for example [16,18,31].

Estimating the mean function in the SIM has been extensively discussed in the literature. For instance, [12] proposed a
semi-parametric least squares estimator for general single index structure models; [11] developed an average derivative
estimation that can result in an estimator converging to the true value of the index parameter at the rate of n−1/2. We
will call it

√
n- consistent estimator. [25] proposed an adaptive approach, called minimum average variance estimation

(MAVE) which can be used to the SIMwith weaker conditions; [4] introduced a method of estimating functions to study the
SIM; [18] further proposed a new estimationmethod based on distance covariance. However, these estimators have adverse
consequences for the efficiency and can be even inconsistent in the presence of heteroscedasticity. Thus, heteroscedasticity
testing is an important issue for the SIM. There are some relevant proposals in the literature. For instance, [3,21] obtained the
score test statistic for parametric structure of the variance functionwhen themean function is respectively linear regression
model and for the first-order autoregressive model. [19] developed a modified score test for linear models. [7,14] proposed
tests that are based on a L2-distance between the underlying and the hypothetical variance function. [30] proposed amarked
empirical process based test of the squared residuals for nonparametric model. [5] extended the test statistic introduced by
[28], which was originally for goodness of fit of the mean regression, to detect a possible heteroscedasticity. [8] suggested
a test for parametric variance function in nonparametric regression model. [29] also considered the heteroscedasticity
checking in nonlinear and nonparametric regression models. [15] extended the idea of [5] to semiparametric regressions.
Other references include [26,6]. A relevant literature is [20] for testing the SIM structure.

When both the mean and variance functions have dimension reduction structures, it is often the case that both share an
identical index such as generalized linear model and its extensions. In this case, we should take this useful structure into
consideration when we construct a test statistic.

In this paper, we suggest two test statistics according to the model structures. The first one is a kernel-smoothing
type nonparametric test that is against fully nonparametric heteroscedasticity. In fact, this test statistic can be used to
check whether there is heteroscedasticity or not without assuming any specific formula of the variance function under the
alternative hypothesis. However, when the dimension of covariates is large, it may suffer from the curse of dimensionality in
nonparametric estimation. When both mean and variance functions have the common dimension reduction structure with
the same index, a test incorporated with the dimension reduction structure is suggested such that the test can completely
avoid the curse of dimensionality. The interesting features are as follows.When the dimension reduction structure holds, the
second test has the faster convergence rate and can detect the local alternative hypotheses distinct from the null hypothesis
at a faster rate than the one the first test can achieve. However, the second test could also performbadlywhen the dimension
reduction structure does not hold. That is, it is not robust against nonparametric model structure. Thus, it is an interesting
topic on how to construct a test that enjoys the advantages of two tests.

The rest of this paper is organized as follows. In Section 2, the kernel-smoothing based test statistic is constructed, the
asymptotic null distribution and the power performance under the global alternative and local alternative hypotheses are
investigated. In Section 3, another test for the models with a dimension reduction structure is suggested. In Section 4, the
performances of our tests are examined by numerical simulations and the analyses for the Boston Housing Data and the Car
Data. As the test statistics involve estimating β , a brief review and the proofs of the theorems are provided in the Appendix.

2. Testing heteroscedasticity with fully nonparametric variance function

For the SIM (1.1), the hypotheses of interesting are as follows:

H0 : Var(ε|X = x) ≡ σ 2 v.s. H1 : Var(ε|X = x) ≢ σ 2, (2.1)
where σ > 0 is an unknown constant. Denote by {Xi, Yi}

n
i=1 an i.i.d sample from (X, Y ) and let εi = Yi − g(X τ

i β). Note that
under H0, we have E(ε2

i |Xi) = Var(ε|Xi) = σ 2. Then we obtain the following moment condition: under H0,

S1 = E

(ε2

i − σ 2)E((ε2
i − σ 2)|Xi)p(Xi)


= E


E2((ε2

i − σ 2)|Xi)p(Xi)


= 0.
where p(·) denotes the density function of X which is supposed to be continuous. Under the alternative hypothesis H1,
Var(ε|X = x) = σ 2(x) ≢ σ 2, we have that

S1 = E

(ε2

i − σ 2)E((ε2
i − σ 2)|Xi)p(Xi)


= E


E2((ε2

i − σ 2)|Xi)p(Xi)


= E

(Var(εi|Xi) − Var(εi))2p(Xi)


> 0.

These observations motivate us to construct a test statistic based on a certain estimator of S1. We first estimate ∆1(xi) =

E((ε2
i − σ 2)|Xi = xi)p(xi) by

∆̂1(xi) =
1

(n − 1)hp

n
j≠i,j=1

K

Xj − xi

h


(ε̂2

j − σ̂ 2),

where ε̂2
i = (Yi − ĝ(X τ

i β̂))2, K(·) is a multivariate kernel function, h is a bandwidth and σ̂ 2
= n−1n

i=1 ε̂2
i . Here ĝ(·) and

β̂ are the estimators of g(·) and β respectively. Because they can be obtained by familiar methods, the estimation formulas
will be given respectively in the following computation steps and the Appendix.
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