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a b s t r a c t

We propose a link-free procedure for testing whether two multi-index models share iden-
tical indices via the sufficient dimension reduction approach. Test statistics are developed
based upon three different sufficient dimension reduction methods: (i) sliced inverse re-
gression, (ii) sliced average variance estimation and (iii) directional regression. The asymp-
totic null distributions of our test statistics are derived. Monte Carlo studies are performed
to investigate the efficacy of our proposed methods. A real-world application is also con-
sidered.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For a regression problem with univariate response Y and p-dimensional predictors X = (X1, . . . , Xp)
T , we consider the

following generalized multi-index model

Y = g(βT
1X, . . . ,βT

dX; ϵ), (1.1)
where g(·) is an unknown link function,β = (β1, . . . ,βd) is a p×dmatrix, d ≤ p, and the randomerror ϵ is independentwith
X. Model (1.1) is a very general semiparametric model which includes the multi-index model [12,27] and the single-index
model [11,29] with Y = g(βTX)+ϵ as special cases. One is usually concernedwith estimation of indices β, the total number
of indices d and the link function g(·) [9]. We, however, focus on testing if two multi-index models share identical indices
(subspaces). Specifically, consider two d-dimensional multi-index models for two populations (groups):

Y = g1(βT
1X, . . . ,βT

dX; ϵ1), for group 1;

Y = g2(ξT1X, . . . , ξTdX; ϵ2), for group 2. (1.2)
Since the identifiable parameters here are the subspaces spanned by the columns of β and ξ = (ξ1, . . . , ξd), rather than β
and ξ themselves, we develop a test of null hypothesis

span(β) = span(ξ), (1.3)
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where both β and ξ are p × d matrices. This hypothesis is similar in nature to the null hypothesis of common principal
component subspaces for Common PCA considered in [20].

A hypothesis test of this type might be of special interest in many applications involving two datasets, where the same
variables are being measured on objects from two different groups, and for which it is of interest to determine how similar
the two groups are with respect to the span of the indices of predictor vectors regardless of the unknown link functions.

Consider the AIS dataset discussed by Weisberg [24], which contains information on the lean body mass L and other
physical and hematological measurements (X), from 102 male and 100 female elite Australian athletes who trained at the
Australian Institute of Sport. We investigate how the relationship between the body fat and various predictors varies with
gender. Suppose that subject matter knowledge and prior modeling experience suggest that a d-dimensional multi-index
model of the form (1.1) applies to both female and male groups, naturally, we would like to know if the equivalent set of
indices of the hematologicalmeasurements serve for both genders. Informal comparisons such as those basedupongraphical
methods can be carried out. However, such comparisonsmight become unwieldywhen d is greater than 2, and the resulting
conclusions could be overly subjective. Hence, a formal test seemsnecessary here. This is themotivation for our development
of a test statistic for the null hypothesis in (1.3).

We propose a link-free test for testing hypothesis of (1.3) via a sufficient dimension reduction approach [15,3]. For
a regression problem, the scope of sufficient dimension reduction is to seek a minimal set of indices of X, say βTX =

(βT
1X, . . . ,βT

dX), forwhich the distribution of Y |βTX is the same as the original regression Y |X, without assuming a paramet-
ric model. Numerous approaches are available in the literature including sliced inverse regression (SIR; [15]), sliced aver-
age variance estimation (SAVE; [5]), minimum average variance estimation (MAVE; [28]), directional regression (DR; [18]),
likelihood acquired directions (LAD; [4]), and dimension reduction via central solution space [16].

The rest of this article is organized as follows. In Section 2, we give a brief review of sufficient dimension reduction
methods. Specifically, we focus on those methods based upon a spectral decomposition [25]. In Section 3, we present our
link-free test statistic for null hypothesis (1.3). The asymptotic distribution of our test statistic is also discussed.We illustrate
the performance of our method with Monte Carlo studies in Section 4. We then apply our method to the AIS dataset. Brief
conclusions and a discussion on the future research directions are given in Section 5. For ease of exposition, we defer some
technical details to Appendix.

2. A brief review on sufficient dimension reduction: the spectral decomposition approach

In this section, we give a brief review on how to use sufficient dimension reduction to make inference about span(β) in
model (1.1). In particular, we consider three commonly used sufficient dimension reduction methods: SIR, SAVE and DR.

LetΣ = Var(X),µ = E(X), and Z be the standardized predictorΣ−1/2(X−µ). Manymoment based sufficient dimension
reduction methods may be formulated as the solution to the following eigendecomposition problem:

Mzηi = λiηi, i = 1, . . . , p,
where Mz is the Z scale method-specific candidate matrix. Assuming the linearity condition [15] holds, which is a mild
condition imposed on the marginal distribution of the predictors alone, the eigenvectors (η1, . . . , ηd) corresponding to
the non-zero eigenvalues λ1 ≥ · · · ≥ λd form a basis of the Z scale central subspace SY |Z. Then by the invariance property
SY |X = Σ−1/2SY |Z, as described by Cook [3], β = (Σ−1/2η1, . . . , Σ−1/2ηd) forms a basis for SY |X. The linearity condition,
which basically requires that E(X|βTX) is a linear function ofβTX, is a common assumption in dimension reductionmethods
and holds for elliptically contoured predictors [8]. Additionally, Hall and Li [10] showed that as the number of predictors p
increases, the linearity condition holds to a reasonable approximation in many problems.

For the three sufficient dimension reduction methods that target SY |Z, the corresponding candidate matrices are
summarized below:

Sliced Inverse Regression: Mz = Var{E(Z|Y )};

Sliced Average Variance Estimation: Mz = E{Ip − Var(Z|Y )}2;

Directional Regression: Mz = 2E{E2(ZZT )} + 2E2
{E(Z|Y )E(ZT

|Y )}

+ 2E{E(ZT
|Y )E(Z|Y )}E{E(Z|Y )E(ZT

|Y )} − 2Ip.

Although in the literature, people tend to work with standardized predictors, for our purpose, it is easier to describe
the candidate matrices in terms of the original predictor X. Since we will make use of the eigenprojection corresponding
to the non-zero eigenvalues, the βi = Σ−1/2ηi provided by the above approach are orthonormal under the inner-product
of ⟨a, b⟩ = aTΣb, but not the regular dot product, which induces unnecessary difficulty to the development of our test
statistic. In this paper, we work directly with the original predictor X, and, as such, use the following symmetric candidate
matrices M:

SIR: M = Σ−1Var{E(X|Y )}Σ−1
;

SAVE: M = Σ−1E{Σ − Var(X|Y )}2Σ−1
;

DR: M = Σ−1E{2Σ − E

(X − X)(X − X)T |Y ,Y}2Σ−1,
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