
Journal of Multivariate Analysis 136 (2015) 175–189

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Diagnostics in a simple correspondence analysis model: An
approach based on Cook’s distance for log-linear models
Nirian Martín
Department of Statistics and Flores de Lemus Institute, Carlos III University of Madrid, 28903 Getafe (Madrid), Spain

a r t i c l e i n f o

Article history:
Received 17 December 2013
Available online 20 January 2015

AMS subject classifications:
62J20
62H17

Keywords:
Two-way contingency table
Multinomial sampling
Correspondence model
Log-linear model
Pearson’s Chi-square residuals
Cook’s distance

a b s t r a c t

Diagnostics have not received much attention in the literature of simple correspondence
analysis models. Since Cook’s distance was defined to identify influential observations of
the linear regression model, it has been extended to different models, in particular to log-
linear models. In this paper we provide the asymptotic distribution of Cook’s distance of
any kind of log-linearmodels and also amethod for diagnostics, based on it. By using Good-
man’s RC(K) model as a log-linear model to approximate the ordinary simple correspon-
dence analysis procedure, we follow a Cook’s distance approach to identify influential cells
and three examples illustrate the performance of this method.

© 2015 Elsevier Inc. All rights reserved.

1. From the ordinary simple correspondence analysis to Goodman’s RC model: a log-linear approach

The original development of the simple correspondence analysis approach, popular from the publication of Benzécri [5],
aims to describe association patterns between two categorical variables as well as using graphical procedures for that,
once some departures from the model of independence are identified. A variety of extensions have been subsequently
considered with respect to correspondence models, introduced by Goodman [11–13] for the first time, to make sta-
tistical inference when it is assumed that the data are generated under a specific sampling design. More thoroughly,
when reducing the dimensions of the original correspondence analysis model, a new nested model is checked through
a goodness of fit test in order to avoid losing representation of row and column profiles of the contingency table. In
the following lines we shall describe the basic simple correspondence analysis model, but more details can be found
in [3, Section 4]. It is worth mentioning that these models may also be useful for descriptive purposes and graphical
displays.

Let X and Y be two categorical variables, with I and J categories respectively and n individuals cross classified in the
two way contingency table with multinomial sampling. Without loss of generality, each possible outcome of (X, Y ) may
be identified by (i, j) ∈ {1, . . . , I} × {1, . . . , J}. The probability of a specific outcome, denoted by pij = Pr(X = i, Y = j),
is unknown and depends on θ through a model (pij = pij(θ)) and it is assumed to be non null (pij > 0). The contingency
table of unknown probabilities is an I × J matrix P = P(θ) = (pij(θ))i=1,...,I;j=1,...,J which can be expressed in terms of the
transposed row vectors as PT (θ) = (p1(θ), . . . , pI(θ)) and stacking these vectors we can express the whole contingency in
a unique column vector through the vec operator (see [19, p. 343]) as

p = p(θ) = vec(PT (θ)) = (p11(θ), . . . , p1J(θ), . . . , pI1(θ), . . . , pIJ(θ))T .
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By following the same scheme of the previous contingency table, the observed frequencies may be denoted by a unique
column vector, n = (n11, . . . , n1J , . . . , nI1, . . . , nIJ)

T , and also its generator, N = (N11, . . . ,N1J , . . . ,NI1, . . . ,NIJ)
T , which

is a multinomial IJ-dimensional random vector with parameters n and p(θ), M(n, p(θ)).
The ‘‘ordinary or basic’’ simple correspondence analysis (CA) model establishes that

pij = pi•p•j


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where pi• = Pr(X = i) =
J

j=1 pij, p•j = Pr(Y = j) =
I

i=1 pij, K = min{I − 1, J − 1}, uik is the k-th canonical score of
category i of variable X , vjk is the k-th canonical score of category j of variable Y , λk is the k-th canonical correlation such
that 1 ≥ λ1 ≥ · · · ≥ λK ≥ 0,

λ = λ(K) = (λ1, . . . , λK )T , ui = ui(K) = (u1i, . . . , uKi)
T , vj = vj(K) = (v1j, . . . , vKj)

T ,

andD∗ is the diagonalmatrix of ∗. The value of K represents the dimension of the ‘‘ordinary or basic’’ simple correspondence
analysis model, the values of the ui and vj vectors, the ith row and jth column canonical scores respectively, while the values
of the matrices U = U(K) = (u1, . . . , uI)K×I and V = V (K) = (v1, . . . , vJ)K×J , all the row and column canonical scores
respectively and the values of the λ vector, all the canonical correlations. If the summation term

K
k=1 λkukivkj is null, (1) is

equivalent to the independence model, otherwise the value of
K

k=1 λkukivkj indicates the deviation from independence
of cell (i, j). For identification purposes, since (1) is overparameterized, several constraints have to be considered on
parameters. One way to establish these constraints is based on maximizing the correlation between the k-th row of the
matrices U and V , by following successively the order k = 1, . . . , K , that is
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is maximized given that U and V are centered and standardized,
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Maximizing (2) subject to the previous 4K restrictions,U andV are obtained,which are uncorrelated in different dimensions,
i.e.
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ukiuk′ipi• =
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j=1

vkjvk′jp•j = 0, k, k′
∈ {1, . . . , K}, k ≠ k′.

The previous expressions in matrix notation are given by

UpX = VpY = 0K , UDpXU
T

= VDpY V
T

= IK , (3)

where pX = P1J = (p1•, . . . , pI•)T , pY = PT1I = (p•1, . . . , p•J)
T are marginal probability vectors (1∗ is the ∗-th dimen-

sional vector of 1’s). Note that UD
1
2
pX and VD

1
2
pY are orthogonal matrices. Hence, performing the singular value decomposition

of the Pearson chi-square residuals for the independence model
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we obtain the values ofU ,V andλ. This idea serves as linking between the correspondence analysis and the correlation anal-
ysis. It is worth noting that (1) is a saturated model, that is the adjusted probabilities coincide with the relative frequencies
and so in practice the singular value decomposition is
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Taking into account that the chi-square statistic for testing independence is defined as n times the sum of the square of
the left hand side of (4), i.e., X2

=
I

i=1
J

j=1
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2, the chi-square statistic for independence might be also

expressed in terms of the square of the Euclidean norm of the vector of canonical correlations as
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