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a b s t r a c t

We propose jackknife empirical likelihood (EL) methods for constructing confidence
intervals of mean with regression imputation that allows ignorable or nonignorable
missingness. The confidence interval is constructed based on the adjusted jackknife
pseudo-values (Rao and Shao, 1992). The proposed EL ratios evaluated at the true value
converge to the standard chi-square distribution under both missing mechanisms for
simple random sampling. Thus the EL can be applied to construct a Wilks type confidence
interval without any secondary estimation. We then extend the proposed method to
accommodate Poisson sampling design in survey sampling. The proposed methods are
compared with some existing methods in simulation studies. We also apply the proposed
method to an Italy household income panel survey data set.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Missing data appear very often in social science, survey sampling, andmany other fields. A common practice is removing
data with missing values and conducting statistical inference based on only the complete observations. However, simply
ignoring missing values might lead to inefficient and biased inference [25,23]. Imputation is a commonly used approach to
missing data by first creating plausible values for the missing observations and then conducting the statistical inference on
the imputed data. Some commonly used imputationmethods include linear regression imputation [44];multiple imputation
[34]; kernel regression imputation [8,41]; nearest neighborhood imputation (NNI) [29]; ratio imputation [30]; hot deck
imputation [14]; and fractional imputation [19,11,21,20] among others.

Empirical likelihood (EL) [27] is a nonparametric method that has been used in statistical inference for data with
missing values. Its advantages have been well documented in many papers (e.g., [41,38,7,28,37]). The EL-based confidence
interval has a natural shape and orientation determined by data. Moreover, the EL method enjoys some nice properties of
a parametric likelihood, for example, the Wilks theorem [26,27] and Bartlett Correctable [9,2]. See [6] for an overview.
Wang and Rao [41] proposed an EL method for constructing confidence intervals for the mean functionals after kernel
regression imputation under a missing at random (MAR) assumption in the sense of [33]. Wang and Chen [38] generalized
the result to estimators defined by estimating equations after multiple imputation. An attraction of the standard EL is the
internal studentised ability which avoids the explicit estimation of the variance. However, all the existing standard EL ratios
(e.g., [41,38]) for imputed data converge to a scaled chi-square distribution instead of the standard chi-square distribution
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where the scale factor depends on the unknown variances. Hence, we need to estimate the unknown scale factor before
applying their proposed methods.

This paper employs a novel jackknife empirical likelihood (JEL) method. JEL was proposed by [18] to solve nonlinear
constraint problems in the standard EL formulation. JEL has been applied to the inference for the difference in ROC curves
[43], case-control study [17] and testing for high dimensional means [40]. However, no existing studies of JEL could be
used for inferences with imputed values and accommodating sampling designs. The paper tries to answer one question:
how to construct JEL, which allows imputed values and considers sampling designs, so that the JEL ratios are still able
to achieve asymptotic chi-square? We take this opportunity to study the JEL inference for the mean of data with kernel
smoothing regression imputation [8] under ignorablemissingness, andwith semiparametric imputationunder nonignorable
missingness [24]. Moreover, we consider two sampling designs: simple random sample and Poisson sampling design. The
proposed JEL is constructed through adjusted jackknife pseudo-values [31].We show that the proposed JEL ratios converge to
a standard chi-square distribution under ignorable or non-ignorable missingness, with simple random sampling or Poisson
sampling designs. The advantages of the proposed JEL include the following: first, it maintains the good properties of
the standard EL, and it is easier to implement since the proposed methods are asymptotically pivotal and no secondary
estimation is needed; second, it accommodates ignorable andnon-ignorablemissing, togetherwith simple randomsampling
or Poisson sampling. Comparing to the EL and normal approximation (NA) methods, where derivation and computation of
the asymptotic variances is needed case by case, the proposed method is much easier and practical.

The paper is organized as follows. In Section 2,we introduce the basic concept ofmissingmechanisms. Asymptotic results
on JEL estimators and JEL ratios for mean estimators with regression imputation under ignorable or nonignorable missing
mechanisms are presented in Section 3. The extension of the proposed method to Poisson sampling is given in Section 4.
In Section 5, we demonstrate the proposed method by simulation studies. We also apply the proposed methods to Italy
Household Income Panel Survey (IHIPS) data in Section 6. All the technical proofs are relegated to a supplemental paper [45]
(see Appendix B).

2. Basic setup

Let (Xi, Yi) (i = 1, 2, . . . , n) be a set of independent and identically distributed (IID) random vectors from an infinite
population F where Yi is a scalar response and Xi is a d-dimensional random vector. We assume that Yi may be subject to
missingness, but Xi is always observed. Let ri be nonmissing response indicator such that ri = 1 if Yi is observed, and ri = 0
if Yi is missing.

The missing data mechanism is ignorable or missing at random (MAR) [33] if

pr(ri = 1|Xi, Yi) = pr(ri = 1|Xi) = π(Xi). (1)

That is, the conditional missing probability depends only on the observed data. The missingness is called nonignorable or
not MAR (NMAR) if (1) does not hold. That is, the conditional missing probability may also depend on the unobserved data
Yi. In this paper, we assume a semi-parametric response probability model [24] when missingness is NMAR. Namely,

pr(ri = 1|Xi, Yi) = π(Xi, Yi) =
exp {g(Xi) − γ Yi}

1 + exp {g(Xi) − γ Yi}
, (2)

for a completely unspecified function g(·) and parameter γ . Note that, when γ = 0, the NMAR assumption reduces to MAR.
The parameter of interest is θ0 = E(Y ). A consistent estimator of θ0 under either ignorable or nonignorable missing is

θ̂n =
1
n

n
i=1


riYi + (1 − ri)m̂0(Xi; γ̂ )


, (3)

where m̂0(Xi; γ̂ ) is a consistent estimator ofm0(Xi; γ ) = E(Yi|Xi, ri = 0). The estimation ofm0(Xi; γ ) depends on a missing
mechanism, which is introduced below separately under both missing mechanisms.

When the missing data are MAR, m0(Xi; γ ) is independent of γ and m0(Xi; γ ) = m(Xi) where m(Xi) = E(Yi|Xi). Cheng
[8] proposed a Nadaraya–Watson (NW) estimator m̂(Xi) to estimatem(Xi) where m̂(Xi) is

m̂(Xi) =

n
j≠i

rjYjKh(Xi, Xj)

n
j≠i

rjKh(Xi, Xj)

, (4)

with Kh(x, y) = h−dK((x − y)/h) where K is a kernel function and h is the bandwidth.
When the missing data are NMAR, by using the following relationship between conditional densities f (yi|xi, ri = 0) and

f (yi|xi, ri = 1) [24],

f (yi|xi, ri = 0) = f (yi|xi, ri = 1)
O(xi, yi)

E{O(xi, Yi)|xi, ri = 1}
,
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