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a b s t r a c t

This paper considers the class of p-dimensional elliptic distributions (p ≥ 1) satisfying the
consistency property (Kano, 1994) [23] and within this general framework presents a two-
stage nonparametric estimator for the Lebesgue density based on Gaussianmixture sieves.
Under the on-line Exponentiated Gradient (EG) algorithm of Helmbold et al. (1997) [20] and
without restricting the mixing measure to have compact support, the estimator produces
estimates converging uniformly in probability to the true elliptic density at a rate that is
independent of the dimension of the problem, hence circumventing the familiar curse of
dimensionality inherent to many semiparametric estimators. The rate performance of our
estimator depends on the tail behaviour of the underlyingmixing density (andhence that of
the data) rather than smoothness properties. In fact, our method achieves a rate of at least
Op(n−1/4), provided only some positive moment exists. When further moments exists, the
rate improves reaching Op(n−3/8) as the tails of the true density converge to those of a
normal. Unlike the elliptic density estimator of Liebscher (2005) [25], our sieve estimator
always yields an estimate that is a valid density, and is also attractive from a practical
perspective as it accepts data as a stream, thus significantly reducing computational and
storage requirements. Monte Carlo experimentation indicates encouraging finite sample
performance over a range of elliptic densities. The estimator is also implemented in a binary
classification task using the well-knownWisconsin breast cancer dataset.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Owing to generality considerations and breadth of application, density estimation is one of the most actively studied
challenges in statistics. Although nonparametric density estimation was advanced dramatically by the introduction of the
kernel density estimator [17], the performance of this estimator deteriorates rapidly for a fixed sample size as the number
of dimensions grows large. Moreover, this performance depends heavily on the choice of b bandwidth parameters, where b
grows quadratically with the dimension of the problem. This providesmotivation for estimating nonparametrically within a
restricted class of p-dimensional Lebesgue densities (p ≥ 1): one that embedsmany naturally arising distributions, allowing
us to maintain a large degree of flexibility, whilst circumventing these problems that arise in high dimensions.

Much recent research has focused on shape constrained density estimation. For instance, Cule et al. [11] consider
maximum likelihood estimation of a p-dimensional density that satisfies a log-concavity constraint, i.e. densities with tails
decaying at least exponentially fast. This estimator involves no choice of smoothing parameter, and is able to estimate a
range of symmetric and asymmetric densities consistently. Moreover, the estimator is shown to exhibit a certain degree of
robustness to misspecification [10].
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This paper is concerned with nonparametric estimation within the class of elliptic densities in Rp. This problem has
been addressed in the literature before [43,25,39], but our work provides new contributions, which are highlighted below.
Densities from the elliptic class are characterised by the property that their contours of equal density have the same elliptical
shape as the Gaussian. Indeed,many of the convenient analytic properties possessed by themultivariate normal distribution
(see e.g. [31, Chapter 1]) stem from the quadratic form in its characteristic function, which is actually a feature of the elliptic
class more generally [16,7]. Such features are, in part, responsible for the popularity of the elliptical symmetry assumption
in applied work (see e.g. [24,29] for usage in the invariant testing literature, Owen and Rabinovitch [33]; Berk [6] for usage
in portfolio theory, and Chmielewski [9] for a review of elliptical symmetry with applications).

More specifically, we consider a large subclass of elliptic distributionswhose densities can be expressed as scalemixtures
of normal densities, hence restricting attention only to distributions whose tails are heavier than those of a normal [5].
Members of this subclass are said to satisfy the consistency property [23] and are characterised by having all their d
dimensional marginals d < p from the same type of elliptic class as the p dimensional joint distribution. Unfortunately, the
subclass excludes somewell knownmembers of the elliptic class such as the logistic, Pearson types II and VII, Kotz-type and
Bessel distributions. It does however include (inter alia) the multivariate symmetric stable and Cauchy distributions, which
arise as limit laws of normalised sums of i.i.d. randomvariableswith fewer than two finite absolutemoments, leading to their
popularity as (multivariate) mutation distributions in evolutionary algorithms (see e.g. [36,4]), as well as the multivariate
t , popular in finance. A key issue in some applications is heavy tails or nonexistence of moments and so in practice more
emphasis has been given to leptokurtic members of the elliptical class, which is aligned with our approach.

We propose a two-stage estimation procedure based on mixture likelihoods for the density of an elliptically distributed
random vector with the consistency property. A major feature of this estimator is that it accepts data as a stream, which
leads to a significant reduction in computational and storage requirements. In the elliptic frameworkwithout the consistency
property, Stute and Werner [43] proposed a density estimator that also circumvents the curse of dimensionality. Stute and
Werner [43] document the difficulty in estimating the density of an elliptic randomvariable due to the so called volcano effect
that presents itself in a neighbourhood of themean. Liebscher [25] proposed a different estimator of the density that benefits
from improved properties; he showed that his estimator achieved an optimal (one-dimensional) rate away from the mean
for standard smoothness classes. As noted, his estimator does not completely overcome the problems arising near themean.
Furthermore, hismain result requires the existence of at least fourmoments for the randomvariables of interest, which rules
out many distributions of practical interest. Another problem is that the procedure relies on higher order kernels that must
be chosen to satisfy a series of conditions, with the ultimate consequence that the resulting estimate can be negative and
highly oscillatory in certain regions of the support, an effect that is particularly prominent in small sample sizes [28]. Our
estimator, by contrast, always yields a valid density. Moreover, the implementation relies on delicate asymptotic analysis
which requires knowledge of unknownquantities. Since the procedure does not support cross validation, it is hard in practice
to implement the estimator described in [25]. Further discussion of these problems appears in Section 4.2. Although the
construction of our estimator also relies on one unknown quantity, this may be computed, either by cross validation or by
direct estimation. In fact, Monte Carlo evidence also suggests that the estimator is not unduly affected by an incorrect choice
of this quantity. A key difference in the orientation of our approach is that we allow for heavy tailed data and our estimation
procedure explicitly uses information or assumptions about tail behaviour rather than smoothness properties.

2. The model and its properties

Let X1, . . . , Xn be i.i.d. random vectors in Rp having a density f ∈ F . In this paper, we are only concernedwith the case in
whichF is the set of elliptic densitieswith the consistency property (see below); it is of interest to study the implications for
the estimator of f when the assumption of elliptical symmetry is violated, but this task is left for futurework. A p dimensional
random vector X is said to have an elliptic distribution with mean µ, scaling matrix Ω (positive definite), and Lebesgue
measurable generator gp : R+

→ R+ (written X ∼ El(µ,Ω, gp)) if its density function at x has the form

f (x) = cp|Ω|
−1/2gp


(x − µ)TΩ−1(x − µ)


.

The parameters µ,Ω and gp uniquely determine the elliptic density up to a scaling factor: El(µ,Ω, gp) = El(µ, cΩ, gp,c)
where gp,c(q) = gp(q/c), which means that, except in the case that a strict subset of variables in X have infinite variance
(which is ruled out by the consistency property; see below), we can always consider anΩ with diagonal elements all equal
to one. ThisΩ is just the matrix of linear correlation coefficients in the case where the elements of X have finite variances,
however, to subsume the more general cases, we will refer toΩ as the orbital eccentricity matrix. ProvidedΩ is full rank, X
necessarily has the following stochastic representation [7, Theorem 1]

X d
=µ+ RAU (p); A = Ω1/2, (2.1)

where d
= means equality in distribution, U (p) is a random vector uniformly distributed on the unit sphere in Rp, i.e. on

{u ∈ Rp
: uTu = 1}, A is the square root ofΩ and R is a scalar random variable on R+, distributed independently of U (p). By

the full rank condition, wemay define Z := A−1(X −µ)
d
= RU (p), which has a spherical distribution, hence is distributionally

invariant under the orthogonal group [31, Definition 1.5.1]. The density of Z is thus uniquely determined by the density of
ZTZ d

= R2 according to f (z) = cpgp(zT z) ≡ cpgp(r2), where this density exists if and only if R has density at r, hp(r), related
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